I am interested in speech recognition, hidden Markov models, recurrent neural networks, parallel sorting, parallel searching, parallel filesystems, parallel operating systems, learning algorithms and networking protocols. If you are interested in the rsync algorithm then you may find my thesis useful.
-----BEGIN PGP PUBLIC KEY BLOCK----- Version: GnuPG v1.4.1 (GNU/Linux) mQGiBDsy+DMRBACF9LTcR+mvoJcfEKUcSUQhncRDRJc9YQuSzJj+SZCQRjpZNU8a aT+kZH9efqFWiv2tPEnfimVCUxMplqZmomqt+7tmHW/hFjYxya6s8m5amT1RI9SI EVuupwKVkI8FLqHzRcqgRLwK63voUsYLpXyNvaV4pAKSw0ISaiIasIhVYwCg0Bpd /VmDdtrswTcdxNyoGJ2QjUED/RJWFkJ9wxWBnzexfM3HsHbqmrf+TbRSnLcUUPpR 9cFEwHHda7x4OWQIbkDMN+pN8VPCcWbx9lh91hcwTwcDTKJNaENCHfm858gip8mK B2igb2l5QTRTISu4uw12jau6dHxA3zy6kJOq87dxzIfruSiDpveoUt30rUB1vefg gMuGA/9h7XAlIrxGMvkSZV6B5nebaY3ov3wX8YIJwm40CVXquUE0XrplyR5KZKh3 SG7yraH6Vw9iqu75Js9d+pD0Hjqg/IO6cyr1Tx1hnMJsV7tg2q6DKQGKqqvq3Z+v RXo2UEUpxna34lPsarjtEtefX1QPESt2+SVYyVFGEZsyFyQqQ7QhQW5kcmV3IFRy aWRnZWxsIDx0cmlkZ2VAb3NkbC5vcmc+iF4EExECAB4FAkLAlH0CGyMGCwkIBwMC AxUCAwMWAgECHgECF4AACgkQbf9zMVhTZ5HIigCfZ3kh178yCsfwaVIuGZMkkxxy AfYAoKj3MkFqD//BSUOAtN3DlgCfE36+tCJBbmRyZXcgVHJpZGdlbGwgPHRyaWRn ZUBzYW1iYS5vcmc+iF8EExECABcFAjsy+DMFCwcKAwQDFQMCAxYCAQIXgAASCRBt /3MxWFNnkQdlR1BHAAEB62gAniLwli6UYIJqDUn7H2yRAYfaXgowAKDGPFnD5Oz7 SQ/977COGeIX02ljB4hiBBMRAgAaBQsHCgMEAxUDAgMWAgECF4AFAkLAlO8CGQEA EgdlR1BHAAEBCRBt/3MxWFNnkV/aAJ9Norw5CnWZ0QieUeTC9w+KqVSqzACgtbs7 fv4sfLA4GnBYGbGfTlKx5y+JAJUCBRA7MvujY1KVRGwr9K0BAXLqA/90D1OuaXBP sMokmzL68a/AxuxXf2XtYbSJiTgLY8Ba9NqIaRVTBPU0QNcaJsmWoK5K4KQjU/xm UBUqNBVcoKhnViSal4ZcnH4/RltBdezOC8on0rCQlgIY6eE/kq/ShLyhoYRZ52L4 lX3ajDYf832tCr4jer21OjXde+aQu6jhCYhGBBARAgAGBQI7MwCpAAoJEDxjyj+g s+iLs78AoNMYZfLd+VqCfqKUdsnMtAgtw8zyAJ4ku9ZcvqeixDV6FZvrbzEWNe3w AohGBBARAgAGBQI7N9JIAAoJEC46Vm8HIgIeidEAnRbZv5mslAAxJ8pIzeIwWK0h F0hLAKCPYDDI46RBO/tBUi8cmdzBBs6ZLohGBBARAgAGBQI7S3vVAAoJEDy4klAv o7wtzWkAn00YlVkmq9ZCukIoMCvbhwDSDXUDAKCoRFnXVR/nF/6E8CeQxbFfAOpk NokAlQMFEDtLe6xEFXDNRmtCiQEBF8gD/1cwTRl/aWUxY+Lx6mYljZbiRlwfrBJ/ q2CcFTPthWNQiyQV1loGLXrgxlAOCSitisyHpsr/J3IO6K2OV3Ft2YM0sUuYeNPf Sa6xehF1LO1Rdd6qfrvw3j7/YC9eMoF36QcICq7+gjDVDyyMj4aOS8wBJXjA8p9l ceIWjjU5RL7viEYEEBECAAYFAjtLe6MACgkQR1+6DRA9QBP28gCfUyz9D77kkxEQ X7Pbx/hCnXS9cokAn3feRuf9PVxh/6WJFPKjXitK2k/3iEYEEBECAAYFAjtWSPAA CgkQYxU8kEKVVoKN0gCfX19dZPTV0D2sGDPFRI8UyJOJSgUAn2tv+3xehDmoRVQ7 LkpiSEaN0JyYiQCVAwUQOz9mgmRmcAD8BdppAQHGjQP+Lb3JGlkez+fom8Rqd2iW bc1mI3zYvlJFithgZwT1beQQkPHW9rju1jE73WTZnd+7U/T34DK+dt12YyRj1DxT 9PymD0zHS4ZglE5QmgfgJYJtpP/BJ0dgQfqDtWCnrMkEvPWdRzzNK3yn4u3jShEY uAmQ/+CZsiKDTgd2gab4F1eJAJUDBRA7S5p7fjFQpnY76QEBAfLfA/4wajpLgv/C cd+N0IRnhtawI8Pn5BPqdW6123UBD1gf0t80zPPuA5jXjAyM+tv9BudzOWMq6IKA 1jjCksm32zGFQ8NQl1lmgNresCFPwylZ5wxWPwh51rK/vHDtFSMQuY1eWVk9fFA/ KLQMMcTwXhj14jmzunRj+lUXzWVMvQXp3okAlQMFEDtLe6elT+CH4IbLkwEBCp4D /R7qL7OgM6G3hJ6RmatXtScijECdpoIs2aNx1/FEtcmgSnVDv9/AMhH8UR+1VfGW LAwyqxJr9qbAmZWVUbKMNhViSZX7FnZX/YY3EEu3IvVvrdQEkJc8zxPF/v2yaNbX paASCgB/xtLaoTrfHUU6PFzXc7N4avx1hDCpIhkTABywiEYEEBECAAYFAjtLe6kA CgkQ4hFoDYCwek+hTwCbBA2nWsuAxLS0oU6edpJr1iBdGFgAni486N9bK33tXjIT gKkQOIBu0P5giEYEEBECAAYFAjtLe68ACgkQ7To545NnTEBq+wCg37+qY85AC52Y 84Q+OQSjRSpZetQAoNqoDi582bAdEzD6MrQqeE9Bk3CXiEYEEBECAAYFAjuBVFYA CgkQRfyQixBFqk/ExACeI1GjLY8XCkwBggd0NFqEKrHUcS8An1DHFF48On5nUcrX KTCXa3GO2BpuiQCVAwUQO4FTIPbvOLj4Q3BxAQHiJQQAkqsqaaIFKuj8agXpyjAn EB4ycAMttKZ5dGjb8JRYn0NQ10L4bf91/HsiFExtd0u0437q6ds9wgAgABWdwRC9 7480///K4/I8unhth0xQPV7bAJNJEzBIXJ2gL4T+vCrEV+gRJOn97T3G9zFqRyJv c81brlcYbDBEyB3rZiDCr6CIRgQQEQIABgUCPLd8+wAKCRCDImtwLoTy8jCXAJ0X O0PDyd8BD6ebuhQwRWE5t8dWpACdEiWTtBML8cXEF8b75zcUQR3cXJeIRgQQEQIA BgUCO74v7wAKCRDGeHleRbLZUvdAAJ0VTgljivAjpUxLZSybnGBeSNbUHgCcCbY4 hUhi+T7s4jFyoVnB4MmyvE+IRgQQEQIABgUCO+xYfQAKCRCDaLtZZvvBjHFfAJwO bPIamVOfwTo7i2SYafTzai2vEACgosTrLdI/G+zurBJN86qPXaKVXAGJAJUDBRA7 lVWbYM5uoIQI1l0BAaiRBADf76/htLONu1/Qy/OZ7/Amk1vqc9NeVjHE6PY3dO7d e2RIGes68VNV49Cfdov4FM1Oc7T7couyL8isTa5H6YV24Y8JEV7318pDqOr5SXx3 aM2rm4ohtR2wt56WdqZP4e/V9OL1NiPKKHadKmzzn0j0uNf8YGAt3/kc2mdJd+2i /IhGBBARAgAGBQI7aOgFAAoJEHbvjOiHsc+1dJ4AoOpA06x4ttWNAHO9pgNj/TOk vaoLAKClS4wGJN+whev9PuRX4v4STTagnokBHAQTAQIABgUCPRsB+gAKCRA3txdR 3Hn6yZX0CAC22ecjTBFeTs1SPIWHj75K2wgELoMYvwsmicEx+v0gZlQdCh3LrTRx Gz/ZsYUszclZKF2ivVtq2mZ337YvpXsLo1jSUzPYQ1e6SCUX0ePzmj98bB+ER1i7 hJWxq1PTlHxTmJYiIxW13e2c4OzjMScbZ0EXlg5k5ELy3LeIHWYO0MIz+T6mN8Wx PMQ3Av2/3bzAYcKsmvAIJtQD8qxCLZgp7J3hjdC/JFvReN0mQBilzlfP7qtUfNBg OkMcEltheK8XKgsMctxiY1zJKjNSxnJfCqrMlt2AQu8WtCglmASMeQl7qHtIwNFa 0OXcjW4o5B4X5JagrKjCTG38dQzSn5xoiEYEEBECAAYFAjuy1CIACgkQFG47PeJe R5+imACcD1TPeBXpjqTMoj0YgNWM44a5GY8AoLC8ia8dILu5FJptp1fYedHL4dci iEYEExECAAYFAj0bAc0ACgkQaILKxv3ab8aStgCfdWT96PgHHN0edh2h50Svo2Bb /XEAnR2Is94gYdywaEC0bZlbH8kHJxUGiEYEExECAAYFAj/6MhIACgkQbNtDbHIE hSXl/gCdGxV1t8RatoP0aa65NH5yhW2PxvoAoLNu/MJwEndeu94R4OgSa1qlrX7o iEYEExECAAYFAj/ZcNgACgkQKb5dImj9VJ9/KQCfVCXNmum3D4ty3ZoZQz0PvvVn RyUAn0wsbMwh4MtvK48yqwYQbDjsPHiciEYEEhECAAYFAkHQgaYACgkQ9WZbifQp crUb2ACgkYju4OGN/h8JZg+iGRfztjtKbL4AoJZM5qT7IfnRFliK9FRYe3EKK4LV iEYEEBECAAYFAkJ03ecACgkQcWkuqYXk/ux21ACfQSkk4S9Nyz6A3dN1I+wIXDaS cIIAnjCNQVAf+OWJiEskoAxWhFRoCEHciEYEEBECAAYFAkJ3g+oACgkQg8ByFc29 vOIb2ACgrj6BE5MKX9AjDIIKk/gsEmRsgHUAn2Kc9/bU9XEhlFhauYgCh0ZAfHFe iEYEEBECAAYFAkJ40ckACgkQL7sOY+mtEZH8XgCeKu4WqkzCGlBQPKiaEfkbEFTT 4eoAoLQXGyXZ/Jh7HG1A46pvJyz2W27xiEYEEBECAAYFAkKAShoACgkQsBlEdLkZ U9/1pgCfSapPWMvzwVwGVNaAywjTE91hJZEAoJY5+0GP4IjDLGLLW/d6oofCmi7Y iEYEExECAAYFAkJ1EQcACgkQGxHUZYfC+tpTYwCfSpnEEloHAvE9PBnarqWZ+zFw LIUAoIGD+6lf+q9T4mUx55nLil/WN+vxiEYEExECAAYFAkJ1HlIACgkQNZLm2b/C KywRHgCeIcmblOZWfTJaFdvPDj8dMdDnS1EAoLww5ehjo0ze1wKRv/EUCuypiVSV iEYEExECAAYFAkJ1Kd8ACgkQW+mXq1Kz5by0zACeJvvoG7ebLUpzVmkeGUAe9wyw 874AoOk5rSwMg/3BaP2b2Odgym+omZg/iEYEExECAAYFAkJ1Q9QACgkQmw81gx7g ZeCXZgCdGrcwIQqGXYJnuniFJTTfvlX1mToAoJi+SAkPJ8k41+YGCkEuRwd+lrOd iEYEExECAAYFAkJ3bFgACgkQ6nvzlwF1Yj52pQCgq09nJuMwEyGVPAUkcoq8s+2t 6VAAn1XhwapTMIQrfRp/6x6vKlDFf+8diEYEExECAAYFAkJ4scEACgkQCvCDPV5t 1VQ+4gCfWzvfYQBTYYz8Jbx6RGbWKBjq/OsAoI4PqrqBeDpuFw5A3cje1aWOxSEu iEYEExECAAYFAkJ8AHoACgkQ8q0egrFzl+HMQQCgnC942X/7Hiqh4IxdbVKt+TWw B2EAn3N1ULl5nKXR2xGIlA1UyuvwST3riFcEExECABcFAjs0Km8FCwcKAwQDFQMC AxYCAQIXgAAKCRBt/3MxWFNnkegjAJ9umvIrJ6B+EZiviM8FvUge64wO9ACgsnxK pwoPQly5W0x/3L2EtRCjAwm0JEFuZHJldyBUcmlkZ2VsbCA8dHJpZGdlQHZhbGlu dXguY29tPokAlQMFEDs/ZolkZnAA/AXaaQEB9pQD/AtDUHCx6AGW/JoCERL9Ahge MEQfcyoulZDvIoClcPBOisFz2O4/a4zOt5hroohtvxvACM+jQT6RhjN602ynRNb+ cG/vxfHyIJDg1W/28TnEEPwn8aVryz3eJgV2w71HR3AsBYDpPncwO4IaYPi6NbYA Uo8vvJzHu6JotE7sOJzGiFcEExECABcFAjsy/nUFCwcKAwQDFQMCAxYCAQIXgAAK CRBt/3MxWFNnkV56AJwPP+zVxXQ8AOVyo2QTIOQ0txutEwCgwcJV88qDO5SGeFW1 62XPoX3kNh2IRgQTEQIABgUCP/oyEwAKCRBs20NscgSFJXsRAKC8QTILVwDd1+y/ sSmvCKSKRyJbfACg6/xVRJrQT+uCncIc7P7+W2fqEYeIRgQTEQIABgUCPRsB0gAK CRBogsrG/dpvxqz/AJ49NHGI5zHdPqd6sUz1fA0FM5ATgACfW0/YG2HzHYEL7NiF vgUAodLEC4eJARwEEwECAAYFAj0bAgMACgkQN7cXUdx5+smABgf+L5fWh2LLThCh nIx3g0MaPGVWDHZGpDeIJCgk8jNsF3ssoKKm0mVeDxduc1U+biDv/3gANgvSm5JA AFSOE/yDmMdJTarJN0nyO/SlPIU1SDpAdMeDSABs1sCNqEH2mP1JluTgMWz4kVml GDDMNLkP7SjFTHwUSIdEFiSIzVMo2INmtL4y+ha4PUFwtGO2JcJ63bjn2rhaiIwL Eo6VHCpT9G1gD0KdV0QUeKcVjVnH1CWfexnIJwC/wy/rco9qGaGp2uzG43O+fLdS Vw2F7nj4ZCk5/NXFgktS+yUc+16ZnWbqqp25gBlm5r03ExAJJS2aBD8A1WGq1bzB EdyWbiC6I4hGBBARAgAGBQI7vjAJAAoJEMZ4eV5FstlSHWQAoNjDXvF7A1Ithci4 QhYpX9UR8UxzAJ9HNceJ9KfzTRuw2hO+La4ButukHIhGBBARAgAGBQI7stQoAAoJ EBRuOz3iXkefIIYAn1Eeml4walXy8gslrG8vtWYXCigOAKCpQ+GLaiwETnpkFSQD TzZmSs32UIhGBBARAgAGBQI7gVRZAAoJEEX8kIsQRapPf2kAn03rArSnNAjMylng INxh2Rln6qm7AKCFn6iNgkBctm4h72C+UVofdaWHS4hGBBARAgAGBQI7aOgJAAoJ EHbvjOiHsc+1J1oAn0mk0dmzAsn5/6GVWpgNA1gmdZ7CAKDHlNFDxUERfpiyS+z2 9tBSI+wswohGBBARAgAGBQI7Vkj9AAoJEGMVPJBClVaCDnkAoKViQCFaovwS0ZMb CAaZE6DqYiXmAJoC7CxpOWbgxJ1p/vWtbatZpt6y9IhGBBARAgAGBQI7S3vYAAoJ EDy4klAvo7wt368AnRnMKTXxQsiH6mSwmuUMk2XCZ0B6AJ9pvZxCKlE65BbMe8xy oNfh5VumMIhGBBARAgAGBQI7S3uxAAoJEO06OeOTZ0xANi4AoPhDAFBEitBC+nNk z1f3EUWYrgX0AKDtoxauw50hb2fq6qKR/27qPMo7PIhGBBARAgAGBQI7S3urAAoJ EOIRaA2AsHpPEacAn36bKfJWrOkar+lrjOVXW7wwjbEiAJ0Zq6xQ08lJ8XKCnPKM lB+d9ts5nYhGBBARAgAGBQI7S3umAAoJEEdfug0QPUAT0P0AoIARJs+s4VCB6bqO ypP6qX4eEb7yAJ49wx68ghX+9PmCSaQVe/brJIGELIhGBBARAgAGBQI7MwCqAAoJ EDxjyj+gs+iL3M4An00cXeck61a44HRFBaswA2Q3iNoJAKCLBEacCnmPkq1H1YXt +IRFyihCyIkAlQMFEDuVVZ9gzm6ghAjWXQEB7FkD/0QawlU3GzRWGY3E4obEY2NJ WGl+5l5BMN4V6xvJUYuD9oB85qWy22vUjp408syeaVxrxcdxCUCk911Ze/PXvtdf D80CHNvNIFpQZ6XLDeO0a7mSQaoLWfwvxD+ZaCdbuEDaL3mleXsCIXTXxikyXe/U 0H1FDBLgPw/VHj7sq2TFiQCVAwUQO4FTSvbvOLj4Q3BxAQE7KAP5AcL9ivzPTaKO fsoOOT33g7kj+xrAX6EakEVpwOttEC+2P7y4yxAlg+/LITFGCYC9lGmoXdoevElR iuGJ27+t9ROPuRmXiaB/ujUIKndevpa0kfCDJF36KjrC2uQBy0gSL/2AYz8alR6m T7wMeyHKZwSSnl1PGmnkdhnYwgMUzX2JAJUDBRA7S5qDfjFQpnY76QEBAREJA/9t x177lxV7XiuwajWuH3Qr8zbc7zQ2wqTJphiQIVaDGyXrCvIzKb3dltNBQ9De/YZA F9wBv/DX2RNTRgsDxYsypC1xzYpoNSlZxTqIVV11+fPd9u+IJ+PujzGJzispJJvJ oxu3QwnUMJ8FkYlqcKIx+hwzlOteky9T3NVeJUzzpIkAlQMFEDtLe65EFXDNRmtC iQEBH3cD/jzudZ3btGlCzoiiYdSS4M49wbiLKRbsdqOsbPHa7yJsTZShvbec5PAJ miw837VKz6nPc+KS1cTU49h/pphj0BMMHiRmPRodRl/kKTXqQXdo0JapU4StPMNL dKjA/KqNuv4t5vGhnL0R4cfOyQU5WQXRAhzvY5hUM/VrlGJ7e8qSiQCVAwUQO0t7 qKVP4IfghsuTAQHrfQQAgz4I4+e+vv1XzBsxJdtAgJq33u/3dYMGUEvqkZO3UNxe h7M/Ft8PFYItXQQa1Zy7StXCUEqcGfXBl2++fwEQR8cr7HjJ7zzdAc/5owImp4VA 3dJmhAVLSseIKwoT/dG9tUlB2Kj11QhiOQcx5WfpU74QdN8xcPMgBtrXSm9jk5+I RgQSEQIABgUCQdCBrwAKCRD1ZluJ9ClytU0aAKDdu+XGfsjZBYSytziRho+jWzDO VwCg5vALp3GATkdgLb0LH6o9nOePhB2IRgQQEQIABgUCQnTd5wAKCRBxaS6pheT+ 7OwuAKCxHaA/AsZodwH4pPGTm39B4+V8/wCeLmZ/9VL+Ct9uLLC7ie2ppeY+uxqI RgQQEQIABgUCQneD7QAKCRCDwHIVzb284kx4AJ4imsJseeEkqExxTG1H+diYodj1 dQCgoCj5sCJNa4K7HwRc2+zDovisezGIRgQQEQIABgUCQnjRywAKCRAvuw5j6a0R kf1KAJwNAfm7br6oNCxF8+lH/iBIzJC8EwCfVQbSp96ftiocJYCoj1p28+ASvySI RgQQEQIABgUCQoBKGgAKCRCwGUR0uRlT32QgAJ4uSEoz6bXQdIJ/d/wVeT0XjeaQ QgCg+1jXr3JuJLUriWSJm/tsQzjVLmWIRgQTEQIABgUCQnURCgAKCRAbEdRlh8L6 2t0lAJ43hRb2cVhiwyEhvGUTfzfKXOjjEQCcD3DjL3emc/N7USNUdtcMaWcNkG6I RgQTEQIABgUCQnUeVgAKCRA1kubZv8IrLE12AKDYoJk/BguovEtvLAp7dRd5e5In TACfQrPpoP4UsANhm0AUIU0rmcVQmUeIRgQTEQIABgUCQnUp3wAKCRBb6ZerUrPl vBPUAJ9jSJ4kX0WLtM65eonC8JhxtGm5wQCeO95XG/WPRrVTx5I7jHbQx+momW6I RgQTEQIABgUCQnVD1wAKCRCbDzWDHuBl4GowAKCcldzF7nOeGGluB9Y+h8DMs4ku AwCgnuxdW2DDSqqCAQu/S56zmcTpzwKIRgQTEQIABgUCQndsWQAKCRDqe/OXAXVi Pj8CAKC3QoB8gIbD5z3bSBXtkmxmIr8cZgCgosCp50elYFskj7SMYBPRDvQ0zeGI RgQTEQIABgUCQnixxgAKCRAK8IM9Xm3VVEIoAKCnE2v4gcfO1LzbpzCMYJQTfcnf VQCfYWvLdHtuc8sGb6d/gVzCmuqmbkG5Ag0EOzL45RAIAIaUfusAXA3ZY0XoCLDD 6fwtpLqwvyQ2VeEhdEs4bBWeI3Jt2UAcGg7escY7DtfuK3FgvMdekmIRbV8fv37B chttnunripPe264ttF/vrtbCx629mAPICtTEt3EVxHT9G3biJtHCOwl8w6GDmD1y x6DFm+M7uq+jFgM5zz5lXHHCKydZQ3Yg521OwHdcjAv+N5xeVRz5vEXpzZIDmk2Z 0cAKUCwxaXCpGkMFOyRwul8EZTg/mmdfBtlhuRQzSSuqulrfYUjXfYivX0zb2gDd NO0amz3j8K7DTfTlaIoxyuDKfJa+k9SHzGm14N2oEyjljfJRqKnjPHy+pgyzgOqU SG8AAwUH/jwv2H8ilbgfVMU2jhd5+m/mXb1TqyywR8UbALUE3iiUZxWhxIEts+Zo m4LmPCmcYhlznh7+ii36HYJccAsc72jXMjL28H/7olpYrqj9B+AUXrKIfn+KfkVP LjPdHwc+Z/qIwVe65s9TpVL5bpLRaaSmh7BppVScFFSF+trv3R+mPSHftXLG6sJ6 EdW7dzshui4q9qlOkQSVBDcO1Vwj/fxvR51eQyd3BhF0Ha7HhTlQsdaIGJzYFIWT cId6hEYaLs1dNDdrWQfiDrEmrNWuyI9wcH81v4rI5oaNTWr72fO+6N/svzEilMcu sD/jZ2qw/zPSO4tmdtRy6rka75CBWWuITgQYEQIABgUCOzL45QASCRBt/3MxWFNn kQdlR1BHAAEB62wAn1hNnlJ8v3GRKOHQkZa2f2T7GKB5AKCTJViCFAqF+B694vQy Lge/T0SMSA== =nviY -----END PGP PUBLIC KEY BLOCK-----