

Linux powered coffee roasting

Andrew Tridgell
Samba Team

Coffee

Python

Linux

USB
analysis

Coffee Roasting

● Inputs
– green coffee beans
– heat (needs to get to about 210°C)
– stirring (to distribute the heat)
– time (about 15 minutes)

● Outputs
– roasted coffee!

● Rule of 2
– green beans OK for 2 years
– roasted beans OK for 2 weeks
– ground coffee OK for 2 minutes

Corretto roaster

● Lots of coffee roasting communities
– coffeesnobs.com.au is best known one in Australia
– very active group of enthusiasts

● 2006 - “Corretto” roaster started
– bread machine
– heat gun
– listen to the roast!

pyRoast

● Python coffee roasting control
– feedback loop for temperature control
– configurable roast profiles
– data logging

● Temperature control support
– USB thermocouple
– 'paulus' thermocouple

● PyQt4 interface
– built with designer-qt4

Power control

● How to control power of a heat gun?
– needs to be controllable from pyRoast
– solution: ask Paulus!

USB protocol analysis

● How to decode a USB protocol?
– have a windows driver, no Linux driver

● Usual setup ….

Windows Driver USB device

USB sniffer

protocol filtering

● Much easier if you can modify packets
– can test protocol format theories
– fast development cycle

Windows Driver USB device

rewrite packets

VM USB filtering

● LD_PRELOAD intercept
– preload reads instructions from a file
– developer uses text editor to control USB filtering

VirtualBox 4
USB device

Windows Display

LD_PRELOAD

emacslogfile control file

USB intercept

● Userspace USB controlled by ioctl()
– USBDEVFS_SUBMITURB

● send a USB USB to a device

– USBDEVFS_REAPURBNDELAY
● receive reply from device

● Preload hooks
– open() - check if device name matches, remember fd
– ioctl() - intercept REAPURB, possibly replace data

● Simple replacement
– check USB data size
– replace data with hex bytes from /tmp/usb.data

Protocol analysis

● Stage 1: experimenting
– start with an existing data blob
– edit and watch result on windows display
– try to work out patterns

● Stage 2: theory testing
– write tool to produce desired data
– test against windows display

● Stage 3: write Linux driver
– easy once you know the protocol

Questions?

● More info:
– Coffeesnobs:

● http://coffeesnobs.com.au

– usb_preload:
● http://git.samba.org/?p=tridge/junkcode.git;a=tree;f=preload_usb

– DMM app
● http://git.samba.org/?p=tridge/junkcode.git;a=tree;f=DMM

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

