
Modern Kerberos Features
within Samba

Stefan Metzmacher <metze@samba.org>

Samba Team / SerNet

2020-05-27

https://samba.org/~metze/presentations/2020/SambaXP/

https://samba.org/~metze/presentations/2020/SambaXP/

Topics

I The basics of Kerberos (krb5)

I What is S4U2Self

I What is FAST/CompoundIdentity

I What does existing Kerberos libraries support

I Using S4U2Self/FAST in winbindd

I Challenges of adding new Features

I Protocol Testing with Python

I Questions?

Stefan Metzmacher
Modern Kerberos Features

(2/36)

The basics of Kerberos (krb5) (Part1)

I Kerberos is an authentication protocol
I Defined in RFC 4120 and others
I Its design consists of 3 components (Clients, KDCs, Servers)
I A Realm is typically based on DNS-Names, e.g. EXAMPLE.COM
I Strong mutual authentication is offered, which provides replay

protection
I GSSAPI/SPENEGO is used for client to server authentication

I Kerberos uses strong symmetric key crypto:
I aes256-cts-hmac-sha1-96 (by default)
I aes128-cts-hmac-sha1-96 is also possible, but never really used
I arcfour-hmac-md5 is still available and uses the unsalted NTHASH
I des based crypto is deprecated/disabled in modern networks

I public-key crypto is also available (PKINIT):
I Typically authentication with smartcards
I Or other certificate based methods

Stefan Metzmacher
Modern Kerberos Features

(3/36)

https://tools.ietf.org/html/rfc4120

The basics of Kerberos (krb5) (Part1)

I Kerberos is an authentication protocol
I Defined in RFC 4120 and others
I Its design consists of 3 components (Clients, KDCs, Servers)
I A Realm is typically based on DNS-Names, e.g. EXAMPLE.COM
I Strong mutual authentication is offered, which provides replay

protection
I GSSAPI/SPENEGO is used for client to server authentication

I Kerberos uses strong symmetric key crypto:
I aes256-cts-hmac-sha1-96 (by default)
I aes128-cts-hmac-sha1-96 is also possible, but never really used
I arcfour-hmac-md5 is still available and uses the unsalted NTHASH
I des based crypto is deprecated/disabled in modern networks

I public-key crypto is also available (PKINIT):
I Typically authentication with smartcards
I Or other certificate based methods

Stefan Metzmacher
Modern Kerberos Features

(3/36)

https://tools.ietf.org/html/rfc4120

The basics of Kerberos (krb5) (Part1)

I Kerberos is an authentication protocol
I Defined in RFC 4120 and others
I Its design consists of 3 components (Clients, KDCs, Servers)
I A Realm is typically based on DNS-Names, e.g. EXAMPLE.COM
I Strong mutual authentication is offered, which provides replay

protection
I GSSAPI/SPENEGO is used for client to server authentication

I Kerberos uses strong symmetric key crypto:
I aes256-cts-hmac-sha1-96 (by default)
I aes128-cts-hmac-sha1-96 is also possible, but never really used
I arcfour-hmac-md5 is still available and uses the unsalted NTHASH
I des based crypto is deprecated/disabled in modern networks

I public-key crypto is also available (PKINIT):
I Typically authentication with smartcards
I Or other certificate based methods

Stefan Metzmacher
Modern Kerberos Features

(3/36)

https://tools.ietf.org/html/rfc4120

The basics of Kerberos (krb5) (Part2)

I The central ”Key Distribution Center” (KDC)
I Stores encryption keys (typically based on passwords)
I Client Principals, e.g. administrator@EXAMPLE.COM
I Ticket Granting Ticket (TGT) principal, e.g.

krbtgt/EXAMPLE.COM@EXAMPLE.COM
I Server Principals, e.g. cifs/files.example.com@EXAMPLE.COM
I It provides an ”Authenication Service” (AS)
I It provides a ”Ticket Granting Service” (TGS)
I Both services of the KDC provide (grant) Tickets

I A Ticket consists of a unencrypted part containing:
I The realm of the granting KDC
I The service principal within the KDC’s realm

I The encrypted part of the Ticket:
I Is encrypted with the shared secret between KDC and service
I The encryption type and the key version (kvno) identify the key
I It contains details about the client/user
I A random ticket session key with a midterm lifetime, e.g. 10 hours

Stefan Metzmacher
Modern Kerberos Features

(4/36)

The basics of Kerberos (krb5) (Part2)

I The central ”Key Distribution Center” (KDC)
I Stores encryption keys (typically based on passwords)
I Client Principals, e.g. administrator@EXAMPLE.COM
I Ticket Granting Ticket (TGT) principal, e.g.

krbtgt/EXAMPLE.COM@EXAMPLE.COM
I Server Principals, e.g. cifs/files.example.com@EXAMPLE.COM
I It provides an ”Authenication Service” (AS)
I It provides a ”Ticket Granting Service” (TGS)
I Both services of the KDC provide (grant) Tickets

I A Ticket consists of a unencrypted part containing:
I The realm of the granting KDC
I The service principal within the KDC’s realm

I The encrypted part of the Ticket:
I Is encrypted with the shared secret between KDC and service
I The encryption type and the key version (kvno) identify the key
I It contains details about the client/user
I A random ticket session key with a midterm lifetime, e.g. 10 hours

Stefan Metzmacher
Modern Kerberos Features

(4/36)

The basics of Kerberos (krb5) (Part2)

I The central ”Key Distribution Center” (KDC)
I Stores encryption keys (typically based on passwords)
I Client Principals, e.g. administrator@EXAMPLE.COM
I Ticket Granting Ticket (TGT) principal, e.g.

krbtgt/EXAMPLE.COM@EXAMPLE.COM
I Server Principals, e.g. cifs/files.example.com@EXAMPLE.COM
I It provides an ”Authenication Service” (AS)
I It provides a ”Ticket Granting Service” (TGS)
I Both services of the KDC provide (grant) Tickets

I A Ticket consists of a unencrypted part containing:
I The realm of the granting KDC
I The service principal within the KDC’s realm

I The encrypted part of the Ticket:
I Is encrypted with the shared secret between KDC and service
I The encryption type and the key version (kvno) identify the key
I It contains details about the client/user
I A random ticket session key with a midterm lifetime, e.g. 10 hours

Stefan Metzmacher
Modern Kerberos Features

(4/36)

The Details of a Ticket (Part1)

Stefan Metzmacher
Modern Kerberos Features

(5/36)

The Details of a Ticket (Part2)

I Server and KDC/Privsvr Checksums:
I Protect the Authorization Information from changing

I ”Logon Info” contains
I The full Windows Authorization Token with group memberships

Stefan Metzmacher
Modern Kerberos Features

(6/36)

The Details of a Ticket (Part2)

I Server and KDC/Privsvr Checksums:
I Protect the Authorization Information from changing

I ”Logon Info” contains
I The full Windows Authorization Token with group memberships

Stefan Metzmacher
Modern Kerberos Features

(6/36)

The Details of a Ticket (Part3)

Stefan Metzmacher
Modern Kerberos Features

(7/36)

The Authentication Service (AS) Exchange (Part1)

I The AS-Exchange authenticates a client/user
I The client proves its identity to the KDC
I The KDC returns a Ticket Granting Ticket (TGT)
I Typically two round trips

I First AS-REQ without Pre-Authentication
I Gives an Error-Message with PRE-AUTH-REQUIRED
I Returns the Password-Salt
I May also provide the capabilities of the KDC

I AS-REQ with Password Pre-Authentication
I A timestamp is encrypted with the client/user key
I A ticket for the krbtgt service is returned in the AS-REP
I The content of the encTicketPart is only known to the KDC
I The content of the encASRepPart is encrypted with the client/user key
I encTicketPart and encASRepPart contain the same ticket session key
I The TGT’s ticket session key is a shared secret between client and KDC

Stefan Metzmacher
Modern Kerberos Features

(8/36)

The Authentication Service (AS) Exchange (Part1)

I The AS-Exchange authenticates a client/user
I The client proves its identity to the KDC
I The KDC returns a Ticket Granting Ticket (TGT)
I Typically two round trips

I First AS-REQ without Pre-Authentication
I Gives an Error-Message with PRE-AUTH-REQUIRED
I Returns the Password-Salt
I May also provide the capabilities of the KDC

I AS-REQ with Password Pre-Authentication
I A timestamp is encrypted with the client/user key
I A ticket for the krbtgt service is returned in the AS-REP
I The content of the encTicketPart is only known to the KDC
I The content of the encASRepPart is encrypted with the client/user key
I encTicketPart and encASRepPart contain the same ticket session key
I The TGT’s ticket session key is a shared secret between client and KDC

Stefan Metzmacher
Modern Kerberos Features

(8/36)

The Authentication Service (AS) Exchange (Part1)

I The AS-Exchange authenticates a client/user
I The client proves its identity to the KDC
I The KDC returns a Ticket Granting Ticket (TGT)
I Typically two round trips

I First AS-REQ without Pre-Authentication
I Gives an Error-Message with PRE-AUTH-REQUIRED
I Returns the Password-Salt
I May also provide the capabilities of the KDC

I AS-REQ with Password Pre-Authentication
I A timestamp is encrypted with the client/user key
I A ticket for the krbtgt service is returned in the AS-REP
I The content of the encTicketPart is only known to the KDC
I The content of the encASRepPart is encrypted with the client/user key
I encTicketPart and encASRepPart contain the same ticket session key
I The TGT’s ticket session key is a shared secret between client and KDC

Stefan Metzmacher
Modern Kerberos Features

(8/36)

The Authentication Service (AS) Exchange (Part2)

Stefan Metzmacher
Modern Kerberos Features

(9/36)

The Authentication Service (AS) Exchange (Part3)

Stefan Metzmacher
Modern Kerberos Features

(10/36)

The Client/Server Authentication (AP) Exchange (Part1)

I The AP-Exchange authenticates a client to a service
I The client proves knowledge about the provides Ticket
I It can be used directly for GSSAPI client to server authentication
I But it can also be used to authenticate requests to the KDC

I AP-REQ provides a Ticket and an Authenticator
I The Authenticator is encrypted with the ticket session key
I The Authenticator contains the client principal of the ticket
I It also contains the current time of the client
I It may contain a Checksum in order to protect other fields
I The GSSAPI-Checksum (0x8003) contains a negotiation structure
I It may contain a random initiator subkey and sequence number
I It may contain optional AuthorizationData

I AP-REP provides mutual authentication to the AP-Exchange
I It is also encrypted with the ticket session key
I That proves that the service as able to decrypt the ticket
I It echoes the client time from the Authenticator
I It may contain a random acceptor subkey and sequence number

Stefan Metzmacher
Modern Kerberos Features

(11/36)

The Client/Server Authentication (AP) Exchange (Part1)

I The AP-Exchange authenticates a client to a service
I The client proves knowledge about the provides Ticket
I It can be used directly for GSSAPI client to server authentication
I But it can also be used to authenticate requests to the KDC

I AP-REQ provides a Ticket and an Authenticator
I The Authenticator is encrypted with the ticket session key
I The Authenticator contains the client principal of the ticket
I It also contains the current time of the client
I It may contain a Checksum in order to protect other fields
I The GSSAPI-Checksum (0x8003) contains a negotiation structure
I It may contain a random initiator subkey and sequence number
I It may contain optional AuthorizationData

I AP-REP provides mutual authentication to the AP-Exchange
I It is also encrypted with the ticket session key
I That proves that the service as able to decrypt the ticket
I It echoes the client time from the Authenticator
I It may contain a random acceptor subkey and sequence number

Stefan Metzmacher
Modern Kerberos Features

(11/36)

The Client/Server Authentication (AP) Exchange (Part1)

I The AP-Exchange authenticates a client to a service
I The client proves knowledge about the provides Ticket
I It can be used directly for GSSAPI client to server authentication
I But it can also be used to authenticate requests to the KDC

I AP-REQ provides a Ticket and an Authenticator
I The Authenticator is encrypted with the ticket session key
I The Authenticator contains the client principal of the ticket
I It also contains the current time of the client
I It may contain a Checksum in order to protect other fields
I The GSSAPI-Checksum (0x8003) contains a negotiation structure
I It may contain a random initiator subkey and sequence number
I It may contain optional AuthorizationData

I AP-REP provides mutual authentication to the AP-Exchange
I It is also encrypted with the ticket session key
I That proves that the service as able to decrypt the ticket
I It echoes the client time from the Authenticator
I It may contain a random acceptor subkey and sequence number

Stefan Metzmacher
Modern Kerberos Features

(11/36)

The Client/Server Authentication (AP) Exchange (Part2)

Stefan Metzmacher
Modern Kerberos Features

(12/36)

The Client/Server Authentication (AP) Exchange (Part3)

Stefan Metzmacher
Modern Kerberos Features

(13/36)

The Ticket-Granting Service (TGS) Exchange (Part1)

I The TGS-Exchange allows the client/user to tickets for server
I If a client wants to access a service it needs a service ticket
I The client can use its TGT to get a service ticket

I TGS-REQ provides an AP-REQ and information about the service
I The PA-TGS-REQ contains an AP-REQ to authenticate the request
I The service principal is given in the body.

I TGS-REP typically returns a service ticket
I The content of the entTicketPart is only known to the service
I encTGSRepPart is encrypted with the TGT session key
I encTicketPart and encTGSRepPart contain the same ticket session key
I The ticket session key is a shared secret between client and server

I TGS-REQ can also return a referral TGT
I The service principal may be located in different realm
I A referral TGT looks like krbtgt/SERVER.REALM@CLIENT.REALM
I The client retries at SERVER.REALM

Stefan Metzmacher
Modern Kerberos Features

(14/36)

The Ticket-Granting Service (TGS) Exchange (Part1)

I The TGS-Exchange allows the client/user to tickets for server
I If a client wants to access a service it needs a service ticket
I The client can use its TGT to get a service ticket

I TGS-REQ provides an AP-REQ and information about the service
I The PA-TGS-REQ contains an AP-REQ to authenticate the request
I The service principal is given in the body.

I TGS-REP typically returns a service ticket
I The content of the entTicketPart is only known to the service
I encTGSRepPart is encrypted with the TGT session key
I encTicketPart and encTGSRepPart contain the same ticket session key
I The ticket session key is a shared secret between client and server

I TGS-REQ can also return a referral TGT
I The service principal may be located in different realm
I A referral TGT looks like krbtgt/SERVER.REALM@CLIENT.REALM
I The client retries at SERVER.REALM

Stefan Metzmacher
Modern Kerberos Features

(14/36)

The Ticket-Granting Service (TGS) Exchange (Part1)

I The TGS-Exchange allows the client/user to tickets for server
I If a client wants to access a service it needs a service ticket
I The client can use its TGT to get a service ticket

I TGS-REQ provides an AP-REQ and information about the service
I The PA-TGS-REQ contains an AP-REQ to authenticate the request
I The service principal is given in the body.

I TGS-REP typically returns a service ticket
I The content of the entTicketPart is only known to the service
I encTGSRepPart is encrypted with the TGT session key
I encTicketPart and encTGSRepPart contain the same ticket session key
I The ticket session key is a shared secret between client and server

I TGS-REQ can also return a referral TGT
I The service principal may be located in different realm
I A referral TGT looks like krbtgt/SERVER.REALM@CLIENT.REALM
I The client retries at SERVER.REALM

Stefan Metzmacher
Modern Kerberos Features

(14/36)

The Ticket-Granting Service (TGS) Exchange (Part1)

I The TGS-Exchange allows the client/user to tickets for server
I If a client wants to access a service it needs a service ticket
I The client can use its TGT to get a service ticket

I TGS-REQ provides an AP-REQ and information about the service
I The PA-TGS-REQ contains an AP-REQ to authenticate the request
I The service principal is given in the body.

I TGS-REP typically returns a service ticket
I The content of the entTicketPart is only known to the service
I encTGSRepPart is encrypted with the TGT session key
I encTicketPart and encTGSRepPart contain the same ticket session key
I The ticket session key is a shared secret between client and server

I TGS-REQ can also return a referral TGT
I The service principal may be located in different realm
I A referral TGT looks like krbtgt/SERVER.REALM@CLIENT.REALM
I The client retries at SERVER.REALM

Stefan Metzmacher
Modern Kerberos Features

(14/36)

The Ticket-Granting Service (TGS) Exchange (Part2)

Stefan Metzmacher
Modern Kerberos Features

(15/36)

The Ticket-Granting Service (TGS) Exchange (Part3)

Stefan Metzmacher
Modern Kerberos Features

(16/36)

Full GSSAPI-SPNEGO Kerberos Authentication

I Client to KDC
I The client gets a Ticket Granting Ticket (TGT) via the AS-Exchange
I The client uses the TGT for the TGS-Exchange to get a Service Ticket
I The Service Ticket may contain OK-AS-DELEGATE
I If so the client uses the initial TGT to get a fresh delegation TGT

I Client to Service (e.g. SMB server)
I The client uses the Service ticket for the GSSAPI AP-REQ
I The GSSAPI-Checksum contains the delegation TGT
I The delegation is exclusive for the specific server
I The delegation ticket session key needs to be isolated
I The server returns an AP-REP with an acceptor subkey
I The acceptor subkey is the base for signing/encryption

Stefan Metzmacher
Modern Kerberos Features

(17/36)

Full GSSAPI-SPNEGO Kerberos Authentication

I Client to KDC
I The client gets a Ticket Granting Ticket (TGT) via the AS-Exchange
I The client uses the TGT for the TGS-Exchange to get a Service Ticket
I The Service Ticket may contain OK-AS-DELEGATE
I If so the client uses the initial TGT to get a fresh delegation TGT

I Client to Service (e.g. SMB server)
I The client uses the Service ticket for the GSSAPI AP-REQ
I The GSSAPI-Checksum contains the delegation TGT
I The delegation is exclusive for the specific server
I The delegation ticket session key needs to be isolated
I The server returns an AP-REP with an acceptor subkey
I The acceptor subkey is the base for signing/encryption

Stefan Metzmacher
Modern Kerberos Features

(17/36)

Full GSSAPI-SPNEGO Kerberos Authentication

I Client to KDC
I The client gets a Ticket Granting Ticket (TGT) via the AS-Exchange
I The client uses the TGT for the TGS-Exchange to get a Service Ticket
I The Service Ticket may contain OK-AS-DELEGATE
I If so the client uses the initial TGT to get a fresh delegation TGT

I Client to Service (e.g. SMB server)
I The client uses the Service ticket for the GSSAPI AP-REQ
I The GSSAPI-Checksum contains the delegation TGT
I The delegation is exclusive for the specific server
I The delegation ticket session key needs to be isolated
I The server returns an AP-REP with an acceptor subkey
I The acceptor subkey is the base for signing/encryption

Stefan Metzmacher
Modern Kerberos Features

(17/36)

S4U, FAST, Compound Identity

I S4U2Self/S4U2Proxy ([MS-SFU]):
I Allow the usage of Kerberos of an impersonated user
I Typically when the frontend authentication didn’t use Kerberos

I Flexible Authentication Secure Tunneling (FAST) (RFC6113):
I Protects the AS-REQ with a relative weak user password
I The protection is based on the strong machine account password
I It prevents offline dictionary attacks
I It allows Compound Identities to be used
I The PAC within service tickets contains a DEVICE INFO element
I The DEVICE INFO contains a subset of the machine accounts

LOGON INFO
I The service sees from on which device the client was authenticated

Stefan Metzmacher
Modern Kerberos Features

(18/36)

https://msdn.microsoft.com/en-us/library/cc246071.aspx
https://tools.ietf.org/html/rfc6113

S4U, FAST, Compound Identity

I S4U2Self/S4U2Proxy ([MS-SFU]):
I Allow the usage of Kerberos of an impersonated user
I Typically when the frontend authentication didn’t use Kerberos

I Flexible Authentication Secure Tunneling (FAST) (RFC6113):
I Protects the AS-REQ with a relative weak user password
I The protection is based on the strong machine account password
I It prevents offline dictionary attacks
I It allows Compound Identities to be used
I The PAC within service tickets contains a DEVICE INFO element
I The DEVICE INFO contains a subset of the machine accounts

LOGON INFO
I The service sees from on which device the client was authenticated

Stefan Metzmacher
Modern Kerberos Features

(18/36)

https://msdn.microsoft.com/en-us/library/cc246071.aspx
https://tools.ietf.org/html/rfc6113

S4U2Self Request (Part1)

Stefan Metzmacher
Modern Kerberos Features

(19/36)

S4U2Self Request (Part2)

Stefan Metzmacher
Modern Kerberos Features

(20/36)

AS-REQ with FAST

Stefan Metzmacher
Modern Kerberos Features

(21/36)

TGS-REQ with FAST, Compound Identity

Stefan Metzmacher
Modern Kerberos Features

(22/36)

PAC with DEVICE INFO for Compound Identity

Stefan Metzmacher
Modern Kerberos Features

(23/36)

Using S4U2Self in winbindd (Part1)

I winbindd provides group membership information for users
I For tools like ’id’, ’wbinfo -i’, ’wbinfo –user-sids’ and others

I Typically winbindd gets the Authorization Token via authentication
I Eiter via netr LogonSamLogon vor NTLM
I Or via the ”PAC Logon Info” element of the Kerberos service ticket

I There’re some situations when a service needs to impersonate a user
locally:

I This can happen without getting an authentication for that user.
I SSH public-key authentication, sudo or nfs3 access are tyipical use

cases.

Stefan Metzmacher
Modern Kerberos Features

(24/36)

Using S4U2Self in winbindd (Part1)

I winbindd provides group membership information for users
I For tools like ’id’, ’wbinfo -i’, ’wbinfo –user-sids’ and others

I Typically winbindd gets the Authorization Token via authentication
I Eiter via netr LogonSamLogon vor NTLM
I Or via the ”PAC Logon Info” element of the Kerberos service ticket

I There’re some situations when a service needs to impersonate a user
locally:

I This can happen without getting an authentication for that user.
I SSH public-key authentication, sudo or nfs3 access are tyipical use

cases.

Stefan Metzmacher
Modern Kerberos Features

(24/36)

Using S4U2Self in winbindd (Part1)

I winbindd provides group membership information for users
I For tools like ’id’, ’wbinfo -i’, ’wbinfo –user-sids’ and others

I Typically winbindd gets the Authorization Token via authentication
I Eiter via netr LogonSamLogon vor NTLM
I Or via the ”PAC Logon Info” element of the Kerberos service ticket

I There’re some situations when a service needs to impersonate a user
locally:

I This can happen without getting an authentication for that user.
I SSH public-key authentication, sudo or nfs3 access are tyipical use

cases.

Stefan Metzmacher
Modern Kerberos Features

(24/36)

Using S4U2Self in winbindd (Part2)

I winbindd tries to get the ’tokenGroups’ of the user object via LDAP
I There’re a lot of situations where this doesn’t work, e.g. with

OUTBOUND only trusts.
I It is a very hard task because the expanding and filtering at the trust

boundaries of the transitive chain can’t be simulated.
I So the result is often wrong!

I The only reliable solution is S4U2Self ([MS-SFU]):
I It allows a service to ask a KDC for a service ticket for a given user.
I From a given SID we can only lookup the NT4-Names of the account
I We need to use Enterprise-Principals like,

user@DOMAIN1@DOMAIN2.EXAMPLE.COM
I Sadly there’re quite some bugs in current versions of MIT Kerberos and

Heimdal (both client and server)

Stefan Metzmacher
Modern Kerberos Features

(25/36)

https://msdn.microsoft.com/en-us/library/cc246071.aspx

Using S4U2Self in winbindd (Part2)

I winbindd tries to get the ’tokenGroups’ of the user object via LDAP
I There’re a lot of situations where this doesn’t work, e.g. with

OUTBOUND only trusts.
I It is a very hard task because the expanding and filtering at the trust

boundaries of the transitive chain can’t be simulated.
I So the result is often wrong!

I The only reliable solution is S4U2Self ([MS-SFU]):
I It allows a service to ask a KDC for a service ticket for a given user.
I From a given SID we can only lookup the NT4-Names of the account
I We need to use Enterprise-Principals like,

user@DOMAIN1@DOMAIN2.EXAMPLE.COM
I Sadly there’re quite some bugs in current versions of MIT Kerberos and

Heimdal (both client and server)

Stefan Metzmacher
Modern Kerberos Features

(25/36)

https://msdn.microsoft.com/en-us/library/cc246071.aspx

krb5 {init,tkt} creds step() APIs (Part1)

I The usage of S4U2Self with trusted domains/realms is complex:
I The example showed that a lot of transiting KDCs must be reached
I We should use site-aware KDCs (domain controllers) for all steps

I Currently winbindd prepares a custom krb5.conf
I It fills in the KDC ip addresses for the default realm
I But it’s not possible to know all hops before calling krb5 functions

I It would be good if the Kerberos libraries would only do Kerberos
I We can do (site-aware) DC lookups much more efficient.
I It would be good to do the networking interaction on our own.
I We should do parallel async requests in order to avoid long timeouts.

Stefan Metzmacher
Modern Kerberos Features

(26/36)

krb5 {init,tkt} creds step() APIs (Part1)

I The usage of S4U2Self with trusted domains/realms is complex:
I The example showed that a lot of transiting KDCs must be reached
I We should use site-aware KDCs (domain controllers) for all steps

I Currently winbindd prepares a custom krb5.conf
I It fills in the KDC ip addresses for the default realm
I But it’s not possible to know all hops before calling krb5 functions

I It would be good if the Kerberos libraries would only do Kerberos
I We can do (site-aware) DC lookups much more efficient.
I It would be good to do the networking interaction on our own.
I We should do parallel async requests in order to avoid long timeouts.

Stefan Metzmacher
Modern Kerberos Features

(26/36)

krb5 {init,tkt} creds step() APIs (Part1)

I The usage of S4U2Self with trusted domains/realms is complex:
I The example showed that a lot of transiting KDCs must be reached
I We should use site-aware KDCs (domain controllers) for all steps

I Currently winbindd prepares a custom krb5.conf
I It fills in the KDC ip addresses for the default realm
I But it’s not possible to know all hops before calling krb5 functions

I It would be good if the Kerberos libraries would only do Kerberos
I We can do (site-aware) DC lookups much more efficient.
I It would be good to do the networking interaction on our own.
I We should do parallel async requests in order to avoid long timeouts.

Stefan Metzmacher
Modern Kerberos Features

(26/36)

krb5 {init,tkt} creds step() APIs (Part2)

I There are step APIs, which allow doing things on our own:
I They just generate Request PDUs and return the designated realm
I The result from a KDC should be passed in the next round
I This continues as long as the CONTINUE flag is returned.

krb5_error_code

krb5_init_creds_step(krb5_context context ,

krb5_init_creds_context ctx ,

krb5_data *in,

krb5_data *out ,

krb5_realm *realm ,

unsigned int *flags); /* ... _CONTINUE flag */

krb5_error_code

krb5_tkt_creds_step(krb5_context context ,

krb5_tkt_creds_context ctx ,

krb5_data *in ,

krb5_data *out ,

krb5_realm *realm ,

unsigned int *flags); /* ... _CONTINUE flag */

I It’s ideal for us, but they are sadly not feature complete:
I MIT doesn’t allow S4USelf and S4U2Proxy via these APIs
I Heimdal has only an unexported krb5 init creds step() function
I There are work in progress patches for MIT and Heimdal

Stefan Metzmacher
Modern Kerberos Features

(27/36)

krb5 {init,tkt} creds step() APIs (Part2)

I There are step APIs, which allow doing things on our own:
I They just generate Request PDUs and return the designated realm
I The result from a KDC should be passed in the next round
I This continues as long as the CONTINUE flag is returned.

krb5_error_code

krb5_init_creds_step(krb5_context context ,

krb5_init_creds_context ctx ,

krb5_data *in,

krb5_data *out ,

krb5_realm *realm ,

unsigned int *flags); /* ... _CONTINUE flag */

krb5_error_code

krb5_tkt_creds_step(krb5_context context ,

krb5_tkt_creds_context ctx ,

krb5_data *in ,

krb5_data *out ,

krb5_realm *realm ,

unsigned int *flags); /* ... _CONTINUE flag */

I It’s ideal for us, but they are sadly not feature complete:
I MIT doesn’t allow S4USelf and S4U2Proxy via these APIs
I Heimdal has only an unexported krb5 init creds step() function
I There are work in progress patches for MIT and Heimdal

Stefan Metzmacher
Modern Kerberos Features

(27/36)

krb5 {init,tkt} creds step() APIs (Part2)

I There are step APIs, which allow doing things on our own:
I They just generate Request PDUs and return the designated realm
I The result from a KDC should be passed in the next round
I This continues as long as the CONTINUE flag is returned.

krb5_error_code

krb5_init_creds_step(krb5_context context ,

krb5_init_creds_context ctx ,

krb5_data *in,

krb5_data *out ,

krb5_realm *realm ,

unsigned int *flags); /* ... _CONTINUE flag */

krb5_error_code

krb5_tkt_creds_step(krb5_context context ,

krb5_tkt_creds_context ctx ,

krb5_data *in ,

krb5_data *out ,

krb5_realm *realm ,

unsigned int *flags); /* ... _CONTINUE flag */

I It’s ideal for us, but they are sadly not feature complete:
I MIT doesn’t allow S4USelf and S4U2Proxy via these APIs
I Heimdal has only an unexported krb5 init creds step() function
I There are work in progress patches for MIT and Heimdal

Stefan Metzmacher
Modern Kerberos Features

(27/36)

krb5 {init,tkt} creds step() APIs (Part3)

I For Samba we need to have async non-blocking functions:
I Async programming in Samba use the tevent req infrastructure

I We abstract the network details in ’struct smb krb5 network’:
I This allows us to use different strategies
I winbindd may use a different strategie than cmdline tools
I It also avoids linking dependencies.

struct tevent_req *smb_krb5_network_transaction_send(

TALLOC_CTX *mem_ctx ,

struct tevent_context *ev,

struct smb_krb5_network *net_ctx ,

const char *realm ,

uint32_t ds_flags , /* netr_DsRGetDCName_flags */

const DATA_BLOB req_blob);

NTSTATUS smb_krb5_network_transaction_recv(struct tevent_req *req ,

TALLOC_CTX *mem_ctx ,

DATA_BLOB *rep_blob);

Stefan Metzmacher
Modern Kerberos Features

(28/36)

krb5 {init,tkt} creds step() APIs (Part3)

I For Samba we need to have async non-blocking functions:
I Async programming in Samba use the tevent req infrastructure

I We abstract the network details in ’struct smb krb5 network’:
I This allows us to use different strategies
I winbindd may use a different strategie than cmdline tools
I It also avoids linking dependencies.

struct tevent_req *smb_krb5_network_transaction_send(

TALLOC_CTX *mem_ctx ,

struct tevent_context *ev,

struct smb_krb5_network *net_ctx ,

const char *realm ,

uint32_t ds_flags , /* netr_DsRGetDCName_flags */

const DATA_BLOB req_blob);

NTSTATUS smb_krb5_network_transaction_recv(struct tevent_req *req ,

TALLOC_CTX *mem_ctx ,

DATA_BLOB *rep_blob);

Stefan Metzmacher
Modern Kerberos Features

(28/36)

krb5 {init,tkt} creds step() APIs (Part3)

I For Samba we need to have async non-blocking functions:
I Async programming in Samba use the tevent req infrastructure

I We abstract the network details in ’struct smb krb5 network’:
I This allows us to use different strategies
I winbindd may use a different strategie than cmdline tools
I It also avoids linking dependencies.

struct tevent_req *smb_krb5_network_transaction_send(

TALLOC_CTX *mem_ctx ,

struct tevent_context *ev,

struct smb_krb5_network *net_ctx ,

const char *realm ,

uint32_t ds_flags , /* netr_DsRGetDCName_flags */

const DATA_BLOB req_blob);

NTSTATUS smb_krb5_network_transaction_recv(struct tevent_req *req ,

TALLOC_CTX *mem_ctx ,

DATA_BLOB *rep_blob);

Stefan Metzmacher
Modern Kerberos Features

(28/36)

krb5 {init,tkt} creds step() APIs (Part4)

I In combination we’ll have the following low level functions
I They build the foundation for more complex things
I We’ll have only one GENSEC gsskrb5 implementation
I S4U2Self, S4U2Proxy can be implemented on top

struct tevent_req *smb_krb5_init_creds_get_send(

TALLOC_CTX *mem_ctx ,

struct tevent_context *ev,

struct smb_krb5_network *net_ctx ,

krb5_context krb5_ctx ,

krb5_init_creds_context init_creds_ctx);

NTSTATUS smb_krb5_init_creds_get_recv(struct tevent_req *req);

struct tevent_req *smb_krb5_tkt_creds_get_send(

TALLOC_CTX *mem_ctx ,

struct tevent_context *ev,

struct smb_krb5_network *net_ctx ,

krb5_context krb5_ctx ,

krb5_tkt_creds_context tkt_creds_ctx);

NTSTATUS smb_krb5_tkt_creds_get_recv(struct tevent_req *req);

Stefan Metzmacher
Modern Kerberos Features

(29/36)

krb5 {init,tkt} creds step() APIs (Part4)

I In combination we’ll have the following low level functions
I They build the foundation for more complex things
I We’ll have only one GENSEC gsskrb5 implementation
I S4U2Self, S4U2Proxy can be implemented on top

struct tevent_req *smb_krb5_init_creds_get_send(

TALLOC_CTX *mem_ctx ,

struct tevent_context *ev,

struct smb_krb5_network *net_ctx ,

krb5_context krb5_ctx ,

krb5_init_creds_context init_creds_ctx);

NTSTATUS smb_krb5_init_creds_get_recv(struct tevent_req *req);

struct tevent_req *smb_krb5_tkt_creds_get_send(

TALLOC_CTX *mem_ctx ,

struct tevent_context *ev,

struct smb_krb5_network *net_ctx ,

krb5_context krb5_ctx ,

krb5_tkt_creds_context tkt_creds_ctx);

NTSTATUS smb_krb5_tkt_creds_get_recv(struct tevent_req *req);

Stefan Metzmacher
Modern Kerberos Features

(29/36)

Highlevel Samba APIs (Part1)

I At the application level we’ll have some simple functions
I The most common thing is a login into the local machine
I This would be used for pam winbind with Kerberos
I We use the common cli credentials abstraction for user and machine

APIs for a local Kerberos login, e.g. in winbindd:

struct tevent_req *smb_krb5_kinit_login_send(TALLOC_CTX *mem_ctx ,

struct tevent_context *ev,

struct loadparm_context *lp_ctx ,

struct cli_credentials *user_creds ,

const char *machine_spn ,

struct cli_credentials *machine_creds ,

struct gensec_settings *gensec_settings ,

struct auth4_context *auth_context);

NTSTATUS smb_krb5_kinit_login_recv(struct tevent_req *req ,

TALLOC_CTX *mem_ctx ,

struct auth_session_info ** _session_info);

NTSTATUS smb_krb5_kinit_login(struct loadparm_context *lp_ctx ,

struct cli_credentials *user_creds ,

const char *machine_principal ,

struct cli_credentials *machine_creds ,

struct gensec_settings *gensec_settings ,

struct auth4_context *auth_context ,

TALLOC_CTX *mem_ctx ,

struct auth_session_info ** _session_info);

Stefan Metzmacher
Modern Kerberos Features

(30/36)

Highlevel Samba APIs (Part1)

I At the application level we’ll have some simple functions
I The most common thing is a login into the local machine
I This would be used for pam winbind with Kerberos
I We use the common cli credentials abstraction for user and machine

APIs for a local Kerberos login, e.g. in winbindd:

struct tevent_req *smb_krb5_kinit_login_send(TALLOC_CTX *mem_ctx ,

struct tevent_context *ev,

struct loadparm_context *lp_ctx ,

struct cli_credentials *user_creds ,

const char *machine_spn ,

struct cli_credentials *machine_creds ,

struct gensec_settings *gensec_settings ,

struct auth4_context *auth_context);

NTSTATUS smb_krb5_kinit_login_recv(struct tevent_req *req ,

TALLOC_CTX *mem_ctx ,

struct auth_session_info ** _session_info);

NTSTATUS smb_krb5_kinit_login(struct loadparm_context *lp_ctx ,

struct cli_credentials *user_creds ,

const char *machine_principal ,

struct cli_credentials *machine_creds ,

struct gensec_settings *gensec_settings ,

struct auth4_context *auth_context ,

TALLOC_CTX *mem_ctx ,

struct auth_session_info ** _session_info);

Stefan Metzmacher
Modern Kerberos Features

(30/36)

Highlevel Samba APIs (Part2)

I In order to use S4U2Self we’ll have a simple function
I It takes the machine account credentials
I And the user principal for the impersonated user
I It creates a special cli credentials structure
I This can be used as any other cli credentials object
I Typically as user creds for smb krb5 kinit login()

APIs for S4U2Self, e.g. in winbindd:

NTSTATUS cli_credentials_s4u_upn_creds(TALLOC_CTX *mem_ctx ,

struct cli_credentials *machine_creds ,

const char *machine_spn ,

const char *user_upn ,

struct cli_credentials ** _s4u_user_creds);

Stefan Metzmacher
Modern Kerberos Features

(31/36)

Highlevel Samba APIs (Part2)

I In order to use S4U2Self we’ll have a simple function
I It takes the machine account credentials
I And the user principal for the impersonated user
I It creates a special cli credentials structure
I This can be used as any other cli credentials object
I Typically as user creds for smb krb5 kinit login()

APIs for S4U2Self, e.g. in winbindd:

NTSTATUS cli_credentials_s4u_upn_creds(TALLOC_CTX *mem_ctx ,

struct cli_credentials *machine_creds ,

const char *machine_spn ,

const char *user_upn ,

struct cli_credentials ** _s4u_user_creds);

Stefan Metzmacher
Modern Kerberos Features

(31/36)

Highlevel Samba APIs (Part3)

I In order to use FAST for Compound Identity we’ll have a simple
function

I It takes the machine account credentials
I And the user credentials
I It creates a special cli credentials structure
I This can be used as any other cli credentials object
I Typically as user creds for smb krb5 kinit login()

APIs for FAST, CompoundIdentity, e.g. in winbindd:

NTSTATUS cli_credentials_compound_creds(TALLOC_CTX *mem_ctx ,

struct cli_credentials *machine_creds ,

struct cli_credentials *user_creds ,

struct cli_credentials ** _compound_user_creds);

Stefan Metzmacher
Modern Kerberos Features

(32/36)

Highlevel Samba APIs (Part3)

I In order to use FAST for Compound Identity we’ll have a simple
function

I It takes the machine account credentials
I And the user credentials
I It creates a special cli credentials structure
I This can be used as any other cli credentials object
I Typically as user creds for smb krb5 kinit login()

APIs for FAST, CompoundIdentity, e.g. in winbindd:

NTSTATUS cli_credentials_compound_creds(TALLOC_CTX *mem_ctx ,

struct cli_credentials *machine_creds ,

struct cli_credentials *user_creds ,

struct cli_credentials ** _compound_user_creds);

Stefan Metzmacher
Modern Kerberos Features

(32/36)

Challenges of adding new Features (Part1)

I Adding the missing features to upstream MIT and Heimdal
I We need to do quite a bit as research to find how the protocols works
I New features to be added for Samba should be complete
I Libraries with half implemented features are useless
I They would make the code in Samba way too complex to work with
I We would not be able to test all combinations!
I We found more than once: untested code is broken code!

I It’s also very time consuming to discuss the correct APIs
I Upstream MIT/Heimdal may reject changes, which use legacy concepts

I Currently we need to handle 3 different Kerberos libraries:
I External MIT
I External Heimdal
I Internal Heimdal (imported copy of upstream from 2011)

Stefan Metzmacher
Modern Kerberos Features

(33/36)

Challenges of adding new Features (Part1)

I Adding the missing features to upstream MIT and Heimdal
I We need to do quite a bit as research to find how the protocols works
I New features to be added for Samba should be complete
I Libraries with half implemented features are useless
I They would make the code in Samba way too complex to work with
I We would not be able to test all combinations!
I We found more than once: untested code is broken code!

I It’s also very time consuming to discuss the correct APIs
I Upstream MIT/Heimdal may reject changes, which use legacy concepts

I Currently we need to handle 3 different Kerberos libraries:
I External MIT
I External Heimdal
I Internal Heimdal (imported copy of upstream from 2011)

Stefan Metzmacher
Modern Kerberos Features

(33/36)

Challenges of adding new Features (Part1)

I Adding the missing features to upstream MIT and Heimdal
I We need to do quite a bit as research to find how the protocols works
I New features to be added for Samba should be complete
I Libraries with half implemented features are useless
I They would make the code in Samba way too complex to work with
I We would not be able to test all combinations!
I We found more than once: untested code is broken code!

I It’s also very time consuming to discuss the correct APIs
I Upstream MIT/Heimdal may reject changes, which use legacy concepts

I Currently we need to handle 3 different Kerberos libraries:
I External MIT
I External Heimdal
I Internal Heimdal (imported copy of upstream from 2011)

Stefan Metzmacher
Modern Kerberos Features

(33/36)

Challenges of adding new Features (Part2)

I Syncing the internal Heimdal with upstream
I This would make things much easier for new features
I It would bring support for FAST, which would also help the AD DC
I But it comes with a risk of breaking AD DC setups

I We currently only have very limited Kerberos testing
I We only do highlevel tests with gssapi usage
I We have some special tests abusing send to kdc hooks
I The interaction with send to kdc depends on implementation details
I We don’t have real protocol detail testing

Stefan Metzmacher
Modern Kerberos Features

(34/36)

Challenges of adding new Features (Part2)

I Syncing the internal Heimdal with upstream
I This would make things much easier for new features
I It would bring support for FAST, which would also help the AD DC
I But it comes with a risk of breaking AD DC setups

I We currently only have very limited Kerberos testing
I We only do highlevel tests with gssapi usage
I We have some special tests abusing send to kdc hooks
I The interaction with send to kdc depends on implementation details
I We don’t have real protocol detail testing

Stefan Metzmacher
Modern Kerberos Features

(34/36)

Protocol Testing with Python

I We recently added infrastructure for protocol tests:
I This is based on pyasn1 and cryptography.hazmat
I It allows testing each bit in the protocol
I Very similar to our DCERPC raw protocol testing and smbtorture

I We have just some simple tests
I But it’s relatively easy to add more detailed tests
I They will make it much easier to upgrade Heimdal safely
I It will also add confidence when making the MIT KDC production ready

I Researching new features
I Protocol tests help finding details about S4U2Self or FAST
I Much easier than protyping than the C libraries
I Wireshark Kerberos decryption also helps a lot
I wireshark/master (˜3.3.0) from yesterday has a much improved

kerberos dissector

Stefan Metzmacher
Modern Kerberos Features

(35/36)

Protocol Testing with Python

I We recently added infrastructure for protocol tests:
I This is based on pyasn1 and cryptography.hazmat
I It allows testing each bit in the protocol
I Very similar to our DCERPC raw protocol testing and smbtorture

I We have just some simple tests
I But it’s relatively easy to add more detailed tests
I They will make it much easier to upgrade Heimdal safely
I It will also add confidence when making the MIT KDC production ready

I Researching new features
I Protocol tests help finding details about S4U2Self or FAST
I Much easier than protyping than the C libraries
I Wireshark Kerberos decryption also helps a lot
I wireshark/master (˜3.3.0) from yesterday has a much improved

kerberos dissector

Stefan Metzmacher
Modern Kerberos Features

(35/36)

Protocol Testing with Python

I We recently added infrastructure for protocol tests:
I This is based on pyasn1 and cryptography.hazmat
I It allows testing each bit in the protocol
I Very similar to our DCERPC raw protocol testing and smbtorture

I We have just some simple tests
I But it’s relatively easy to add more detailed tests
I They will make it much easier to upgrade Heimdal safely
I It will also add confidence when making the MIT KDC production ready

I Researching new features
I Protocol tests help finding details about S4U2Self or FAST
I Much easier than protyping than the C libraries
I Wireshark Kerberos decryption also helps a lot
I wireshark/master (˜3.3.0) from yesterday has a much improved

kerberos dissector

Stefan Metzmacher
Modern Kerberos Features

(35/36)

Questions?

I Stefan Metzmacher, metze@samba.org

I https://www.sernet.com

I https://samba.plus

Slides: https://samba.org/˜metze/presentations/2020/SambaXP/

Stefan Metzmacher
Modern Kerberos Features

(36/36)

https://www.sernet.com
https://samba.plus
https://samba.org/~metze/presentations/2020/SambaXP/

