
Async VFS Future
within Samba

Stefan Metzmacher <metze@samba.org>

Samba Team / SerNet

2019-09-23

https://samba.org/~metze/presentations/2019/SDC/

https://samba.org/~metze/presentations/2019/SDC/

Topics

I The Evolution of Async IO

I Async SMB2 Query Directory

I Current Impersonation Model

I Fail with tevent wrapper

I Modern VFS for SMB2/3

I Future Impersonation Model

I Make every VFS operation async

I Questions?

Stefan Metzmacher Async VFS Future (2/18)

The SMB VFS Layer

I Samba 2.2.0 was the first release that added a vfs abstraction
I It supported 34 operations, basically posix like syscalls
I opendir(), open(), close(), ...
I And a few NT like calls like [f]{get,set} nt acl()
I It only supported one module per share.

I Samba 3.0.0 made the SMB VFS layer more flexible
I Each share can have a chain of vfs modules specified
I Modules like ’audit’ or ’recycle’ are stacked on top of the default
I shadow copy and quota operations were added

Stefan Metzmacher Async VFS Future (3/18)

The SMB VFS Layer

I Samba 2.2.0 was the first release that added a vfs abstraction
I It supported 34 operations, basically posix like syscalls
I opendir(), open(), close(), ...
I And a few NT like calls like [f]{get,set} nt acl()
I It only supported one module per share.

I Samba 3.0.0 made the SMB VFS layer more flexible
I Each share can have a chain of vfs modules specified
I Modules like ’audit’ or ’recycle’ are stacked on top of the default
I shadow copy and quota operations were added

Stefan Metzmacher Async VFS Future (3/18)

The Evolution of Async IO (1)

I Samba 3.0.20 added support for the posix aio api
I aio read(), aio write, aio suspend(), aio return()
I It uses realtime signals for completions
I The glibc wrappers use a mutex per file descriptor
I Only one pending io is possible per file descriptor

I Samba 3.3.0 added the aio fork module
I It uses shared memory
I A unix socketpair/fd-passing is used for requests and completions
I Supports multiple pending io requests per file descriptor
I While having a bit more overhead

I Samba 3.6.6 added the aio pthread module
I It uses a generic pthreadpool layer
I Only single (blocking) syscalls in the helper threads
I Uses a pipe for the completions

Stefan Metzmacher Async VFS Future (4/18)

The Evolution of Async IO (1)

I Samba 3.0.20 added support for the posix aio api
I aio read(), aio write, aio suspend(), aio return()
I It uses realtime signals for completions
I The glibc wrappers use a mutex per file descriptor
I Only one pending io is possible per file descriptor

I Samba 3.3.0 added the aio fork module
I It uses shared memory
I A unix socketpair/fd-passing is used for requests and completions
I Supports multiple pending io requests per file descriptor
I While having a bit more overhead

I Samba 3.6.6 added the aio pthread module
I It uses a generic pthreadpool layer
I Only single (blocking) syscalls in the helper threads
I Uses a pipe for the completions

Stefan Metzmacher Async VFS Future (4/18)

The Evolution of Async IO (1)

I Samba 3.0.20 added support for the posix aio api
I aio read(), aio write, aio suspend(), aio return()
I It uses realtime signals for completions
I The glibc wrappers use a mutex per file descriptor
I Only one pending io is possible per file descriptor

I Samba 3.3.0 added the aio fork module
I It uses shared memory
I A unix socketpair/fd-passing is used for requests and completions
I Supports multiple pending io requests per file descriptor
I While having a bit more overhead

I Samba 3.6.6 added the aio pthread module
I It uses a generic pthreadpool layer
I Only single (blocking) syscalls in the helper threads
I Uses a pipe for the completions

Stefan Metzmacher Async VFS Future (4/18)

The Evolution of Async IO (2)

I Samba 4.0.0 changed the away from emulating posix aio
I It uses tevent req based send/ recv function pairs
I We aim to have just one async programming model
I struct tevent req *SMB VFS PREAD SEND(mem ctx, ev, ...)
I tevent req set callback(req, smb layer pread done, smbreq);
I int SMB VFS PREAD RECV(struct tevent req *req, ...)

I Samba 4.0.0 aio pthread moved into the default backend
I pthreadpool based async pread, pwrite and fsync are the default now
I It uses the generic pthreadpool tevent job send/recv()
I No vfs module needs to be configured

I Samba still has an aio pthread module
I But it only implements async open(O CREAT|O EXCL) on Linux
I As it is a path based operation we need to get the impersonation right
I Only Linux supports per thread credentials
I But you need to bypath glibc as it implicitly keeps all threads in sync

Stefan Metzmacher Async VFS Future (5/18)

The Evolution of Async IO (2)

I Samba 4.0.0 changed the away from emulating posix aio
I It uses tevent req based send/ recv function pairs
I We aim to have just one async programming model
I struct tevent req *SMB VFS PREAD SEND(mem ctx, ev, ...)
I tevent req set callback(req, smb layer pread done, smbreq);
I int SMB VFS PREAD RECV(struct tevent req *req, ...)

I Samba 4.0.0 aio pthread moved into the default backend
I pthreadpool based async pread, pwrite and fsync are the default now
I It uses the generic pthreadpool tevent job send/recv()
I No vfs module needs to be configured

I Samba still has an aio pthread module
I But it only implements async open(O CREAT|O EXCL) on Linux
I As it is a path based operation we need to get the impersonation right
I Only Linux supports per thread credentials
I But you need to bypath glibc as it implicitly keeps all threads in sync

Stefan Metzmacher Async VFS Future (5/18)

The Evolution of Async IO (2)

I Samba 4.0.0 changed the away from emulating posix aio
I It uses tevent req based send/ recv function pairs
I We aim to have just one async programming model
I struct tevent req *SMB VFS PREAD SEND(mem ctx, ev, ...)
I tevent req set callback(req, smb layer pread done, smbreq);
I int SMB VFS PREAD RECV(struct tevent req *req, ...)

I Samba 4.0.0 aio pthread moved into the default backend
I pthreadpool based async pread, pwrite and fsync are the default now
I It uses the generic pthreadpool tevent job send/recv()
I No vfs module needs to be configured

I Samba still has an aio pthread module
I But it only implements async open(O CREAT|O EXCL) on Linux
I As it is a path based operation we need to get the impersonation right
I Only Linux supports per thread credentials
I But you need to bypath glibc as it implicitly keeps all threads in sync

Stefan Metzmacher Async VFS Future (5/18)

The Evolution of Async IO (3)

I Samba 4.0.0 added aio linux
I Based on io prep pread(), io submit() and io getevents()
I Uses eventfd() for the completions
I It doesn’t do real async io because Samba doesn’t use O DIRECT
I See bug #13128 for more details
I It was removed again in Samba 4.9.0

I Samba 4.12.0 will most likely get an io uring module
I Linux 5.1 introduced a new ring buffer based io uring interface
I It avoids syscalls/context switches as much as possible
I It supports async io even for buffered io
I See https://lwn.net/Articles/778411/
I A patch is available at

https://gitlab.com/samba-team/samba/merge requests/529
I It compiles fine, but wasn’t tested yet at runtime

Stefan Metzmacher Async VFS Future (6/18)

https://bugzilla.samba.org/showbug.cgi?id=13128
https://lwn.net/Articles/778411/
https://gitlab.com/samba-team/samba/merge_requests/529

The Evolution of Async IO (3)

I Samba 4.0.0 added aio linux
I Based on io prep pread(), io submit() and io getevents()
I Uses eventfd() for the completions
I It doesn’t do real async io because Samba doesn’t use O DIRECT
I See bug #13128 for more details
I It was removed again in Samba 4.9.0

I Samba 4.12.0 will most likely get an io uring module
I Linux 5.1 introduced a new ring buffer based io uring interface
I It avoids syscalls/context switches as much as possible
I It supports async io even for buffered io
I See https://lwn.net/Articles/778411/
I A patch is available at

https://gitlab.com/samba-team/samba/merge requests/529
I It compiles fine, but wasn’t tested yet at runtime

Stefan Metzmacher Async VFS Future (6/18)

https://bugzilla.samba.org/showbug.cgi?id=13128
https://lwn.net/Articles/778411/
https://gitlab.com/samba-team/samba/merge_requests/529

Async SMB2 Query Directory (1)

I SMB2 Query Directory needs to return meta data for each entry
I On a unix system readdir() only returns types and names
I For SMB we also fetch meta data for each name
I We need the write time from locking.tdb
I We need DOSATTRs typically from xattrs
I We need the result from stat()

I Samba 4.7.0 optimized fetching the write time.
I In a cluster it is expensive to migrate locking.tdb records via ctdb
I We invented dbwrap parse record send/recv()
I This makes it possible to batch requests to ctdb and reduce latency
I Which is crucial when serving directories with a lot of entries

Stefan Metzmacher Async VFS Future (7/18)

Async SMB2 Query Directory (1)

I SMB2 Query Directory needs to return meta data for each entry
I On a unix system readdir() only returns types and names
I For SMB we also fetch meta data for each name
I We need the write time from locking.tdb
I We need DOSATTRs typically from xattrs
I We need the result from stat()

I Samba 4.7.0 optimized fetching the write time.
I In a cluster it is expensive to migrate locking.tdb records via ctdb
I We invented dbwrap parse record send/recv()
I This makes it possible to batch requests to ctdb and reduce latency
I Which is crucial when serving directories with a lot of entries

Stefan Metzmacher Async VFS Future (7/18)

Async SMB2 Query Directory (2)
I Samba 4.10 optimizes fetching the DOSATTRs/xattrs

I On some filesystem getxattr() is much more expensive than stat()
I We added SMB VFS GETXATTRAT SEND/RECV()
I And SMB VFS GET DOS ATTRIBUTES SEND/RECV() on top
I This lowers the overall latency a lot for such filesystems
I It’s off by default in order to avoid overhead for fast filesystems

I SMB VFS GETXATTRAT SEND/RECV() without getxattrat()
I There’s no getxattrat() syscall yet
I We simulate it with fchdir() and getxattr() with a relative path
I With our pthreadpool each thread needs its current working directory
I On Linux we can use unshare(CLONE FS)
I Some container solutions reject unshare() without looking at the flags

I SMB VFS GET FILE INFO SEND/RECV() might be the future goal
I This would get a mask to request individual aspects
I This would abstract statx() and getxattr() into one helper thread
I And also include the write time from locking.tdb if requested

Stefan Metzmacher Async VFS Future (8/18)

Async SMB2 Query Directory (2)
I Samba 4.10 optimizes fetching the DOSATTRs/xattrs

I On some filesystem getxattr() is much more expensive than stat()
I We added SMB VFS GETXATTRAT SEND/RECV()
I And SMB VFS GET DOS ATTRIBUTES SEND/RECV() on top
I This lowers the overall latency a lot for such filesystems
I It’s off by default in order to avoid overhead for fast filesystems

I SMB VFS GETXATTRAT SEND/RECV() without getxattrat()
I There’s no getxattrat() syscall yet
I We simulate it with fchdir() and getxattr() with a relative path
I With our pthreadpool each thread needs its current working directory
I On Linux we can use unshare(CLONE FS)
I Some container solutions reject unshare() without looking at the flags

I SMB VFS GET FILE INFO SEND/RECV() might be the future goal
I This would get a mask to request individual aspects
I This would abstract statx() and getxattr() into one helper thread
I And also include the write time from locking.tdb if requested

Stefan Metzmacher Async VFS Future (8/18)

Async SMB2 Query Directory (2)
I Samba 4.10 optimizes fetching the DOSATTRs/xattrs

I On some filesystem getxattr() is much more expensive than stat()
I We added SMB VFS GETXATTRAT SEND/RECV()
I And SMB VFS GET DOS ATTRIBUTES SEND/RECV() on top
I This lowers the overall latency a lot for such filesystems
I It’s off by default in order to avoid overhead for fast filesystems

I SMB VFS GETXATTRAT SEND/RECV() without getxattrat()
I There’s no getxattrat() syscall yet
I We simulate it with fchdir() and getxattr() with a relative path
I With our pthreadpool each thread needs its current working directory
I On Linux we can use unshare(CLONE FS)
I Some container solutions reject unshare() without looking at the flags

I SMB VFS GET FILE INFO SEND/RECV() might be the future goal
I This would get a mask to request individual aspects
I This would abstract statx() and getxattr() into one helper thread
I And also include the write time from locking.tdb if requested

Stefan Metzmacher Async VFS Future (8/18)

Current Impersonation Model
I The SMB layer calls change to user and service()

I This applies to the main process thread for the connection
I It is called before dispatching each request
I This changes the euid, egid and groups (in a cached way)
I It changes to the share root directory
I Sets the global state for parameter substitutions like %U, %L, ...

I The SMB VFS layer relies on already performed impersonation
I It doesn’t actively need to take care of it
I Special cases use become root()/unbecome root()
I change to user and service by fsp() for OFFLOAD WRITE()
I SMB VFS OFFLOAD WRITE() operates on two fsps
I These may not use the same share

I Path based operations are typically replayed completely
I Async opens, e.g, waiting for oplock breaks, are replayed at the SMB

layer
I We reparse the request buffer and redo the impersonation
I There’s no natural way to keep state for the overall request

Stefan Metzmacher Async VFS Future (9/18)

Current Impersonation Model
I The SMB layer calls change to user and service()

I This applies to the main process thread for the connection
I It is called before dispatching each request
I This changes the euid, egid and groups (in a cached way)
I It changes to the share root directory
I Sets the global state for parameter substitutions like %U, %L, ...

I The SMB VFS layer relies on already performed impersonation
I It doesn’t actively need to take care of it
I Special cases use become root()/unbecome root()
I change to user and service by fsp() for OFFLOAD WRITE()
I SMB VFS OFFLOAD WRITE() operates on two fsps
I These may not use the same share

I Path based operations are typically replayed completely
I Async opens, e.g, waiting for oplock breaks, are replayed at the SMB

layer
I We reparse the request buffer and redo the impersonation
I There’s no natural way to keep state for the overall request

Stefan Metzmacher Async VFS Future (9/18)

Current Impersonation Model
I The SMB layer calls change to user and service()

I This applies to the main process thread for the connection
I It is called before dispatching each request
I This changes the euid, egid and groups (in a cached way)
I It changes to the share root directory
I Sets the global state for parameter substitutions like %U, %L, ...

I The SMB VFS layer relies on already performed impersonation
I It doesn’t actively need to take care of it
I Special cases use become root()/unbecome root()
I change to user and service by fsp() for OFFLOAD WRITE()
I SMB VFS OFFLOAD WRITE() operates on two fsps
I These may not use the same share

I Path based operations are typically replayed completely
I Async opens, e.g, waiting for oplock breaks, are replayed at the SMB

layer
I We reparse the request buffer and redo the impersonation
I There’s no natural way to keep state for the overall request

Stefan Metzmacher Async VFS Future (9/18)

Fail with tevent wrapper (1)

I The natural way to keep state for async operations
I We have the wellknown tevent req based send/ recv model
I The impersonation may change during the async processing
I VFS modules could no longer rely on being correctly impersonated
I And doing that by hand is waiting for security problems to happen

I I developed a tevent wrapper infrastructure
I The design was to allow hooks before and after each tevent handler
I The SMB server used that in order to do impersonation
I It only passed down a per user tevent context wrappers
I This way the SMB VFS modules were always in the correct state
I And it was not possible to forget the impersonation

Stefan Metzmacher Async VFS Future (10/18)

Fail with tevent wrapper (1)

I The natural way to keep state for async operations
I We have the wellknown tevent req based send/ recv model
I The impersonation may change during the async processing
I VFS modules could no longer rely on being correctly impersonated
I And doing that by hand is waiting for security problems to happen

I I developed a tevent wrapper infrastructure
I The design was to allow hooks before and after each tevent handler
I The SMB server used that in order to do impersonation
I It only passed down a per user tevent context wrappers
I This way the SMB VFS modules were always in the correct state
I And it was not possible to forget the impersonation

Stefan Metzmacher Async VFS Future (10/18)

Fail with tevent wrapper (2)

I I developed a pthreadpool wrapper infrastructure
I The design was to allow hooks before and after each syscall
I The SMB server used that in order to do impersonation
I It passed down per user pthreadpool context wrappers
I This way the SMB VFS modules could easily use the pthreadpool
I And it was not possible to forget the impersonation

I The implementation was very complex
I It was not really obvious when impersonation happens
I Especially when simulating become root()
I The pthreadpool code was using lockless thread interaction
I It was in master for a while, but got reverted before 4.10.0rc1
I Instead we added explicit impersonation in the few required places

Stefan Metzmacher Async VFS Future (11/18)

Fail with tevent wrapper (2)

I I developed a pthreadpool wrapper infrastructure
I The design was to allow hooks before and after each syscall
I The SMB server used that in order to do impersonation
I It passed down per user pthreadpool context wrappers
I This way the SMB VFS modules could easily use the pthreadpool
I And it was not possible to forget the impersonation

I The implementation was very complex
I It was not really obvious when impersonation happens
I Especially when simulating become root()
I The pthreadpool code was using lockless thread interaction
I It was in master for a while, but got reverted before 4.10.0rc1
I Instead we added explicit impersonation in the few required places

Stefan Metzmacher Async VFS Future (11/18)

Modern VFS for SMB2/3
I Deprecation of SMB1 in 4.11

I The world is clearly moving away from SMB1
I So we are, SMB1 is now disabled by default
I But it is not yet possible to remove it completely

I SMB2/3 is a handled based protocol
I Create takes a full pathname (relative to the share root)
I Everything else operates on a handle returned by Create
I QueryInfo(NormalizedNameInformation) returns a full pathname
I QueryDirectory returns relative pathnames
I SetInfo(File{Link,Rename}Information) takes a full target pathname

I The SMB VFS layer can be simplified a lot
I Modern operating systems have handle based syscalls
I We added SMB VFS RENAMEAT(), SMB VFS LINKAT(),
I SMB VFS MKNODAT(), SMB VFS READLINKAT(),
I SMB VFS SYMLINKAT(), SMB VFS MKDIRAT()
I More calls will follow
I That should allow us to remove a lot of legacy code

Stefan Metzmacher Async VFS Future (12/18)

Modern VFS for SMB2/3
I Deprecation of SMB1 in 4.11

I The world is clearly moving away from SMB1
I So we are, SMB1 is now disabled by default
I But it is not yet possible to remove it completely

I SMB2/3 is a handled based protocol
I Create takes a full pathname (relative to the share root)
I Everything else operates on a handle returned by Create
I QueryInfo(NormalizedNameInformation) returns a full pathname
I QueryDirectory returns relative pathnames
I SetInfo(File{Link,Rename}Information) takes a full target pathname

I The SMB VFS layer can be simplified a lot
I Modern operating systems have handle based syscalls
I We added SMB VFS RENAMEAT(), SMB VFS LINKAT(),
I SMB VFS MKNODAT(), SMB VFS READLINKAT(),
I SMB VFS SYMLINKAT(), SMB VFS MKDIRAT()
I More calls will follow
I That should allow us to remove a lot of legacy code

Stefan Metzmacher Async VFS Future (12/18)

Modern VFS for SMB2/3
I Deprecation of SMB1 in 4.11

I The world is clearly moving away from SMB1
I So we are, SMB1 is now disabled by default
I But it is not yet possible to remove it completely

I SMB2/3 is a handled based protocol
I Create takes a full pathname (relative to the share root)
I Everything else operates on a handle returned by Create
I QueryInfo(NormalizedNameInformation) returns a full pathname
I QueryDirectory returns relative pathnames
I SetInfo(File{Link,Rename}Information) takes a full target pathname

I The SMB VFS layer can be simplified a lot
I Modern operating systems have handle based syscalls
I We added SMB VFS RENAMEAT(), SMB VFS LINKAT(),
I SMB VFS MKNODAT(), SMB VFS READLINKAT(),
I SMB VFS SYMLINKAT(), SMB VFS MKDIRAT()
I More calls will follow
I That should allow us to remove a lot of legacy code

Stefan Metzmacher Async VFS Future (12/18)

Future Impersonation Model (1)

I Some SMB VFS backends don’t use posix syscalls
I glusterfs and ceph use userspace libraries instead of syscalls
I These would also work custom impersonation
I File descriptor based syscalls also do not need impersonation

I We will move the impersonation from top to bottom
I We no longer do generic impersonation at the SMB layer
I Each SMB VFS module needs to do impersonation where required
I We provide simple and easy to understand helper functions
I Every SMB VFS call gets an explicit impersonation token passed
I This makes it obvious for module writers that our strategy has changed

Stefan Metzmacher Async VFS Future (13/18)

Future Impersonation Model (1)

I Some SMB VFS backends don’t use posix syscalls
I glusterfs and ceph use userspace libraries instead of syscalls
I These would also work custom impersonation
I File descriptor based syscalls also do not need impersonation

I We will move the impersonation from top to bottom
I We no longer do generic impersonation at the SMB layer
I Each SMB VFS module needs to do impersonation where required
I We provide simple and easy to understand helper functions
I Every SMB VFS call gets an explicit impersonation token passed
I This makes it obvious for module writers that our strategy has changed

Stefan Metzmacher Async VFS Future (13/18)

Future Impersonation Model (2)

I Introducing lpcfg substitution to avoid global state
I It is complex to keep the global state for substitutions like %U, %L
I We have 54 global and 27 per share options with substitution support
I We can remove the substitution support for some of them
I The rest will be converted to require an explicit lpcfg substitution

Creation functions for the new impersonation model (A unique 64-bit cache-id is assigned):

NTSTATUS smb_vfs_impersonation_create(TALLOC_CTX *mem_ctx ,

const struct auth_session_info *session_info ,

const struct lpcfg_substitution *substitution ,

struct smb_vfs_impersonation **_imp);

struct smb_vfs_impersonation *smb_vfs_impersonation_ref(TALLOC_CTX *mem_ctx ,

const struct smb_vfs_impersonation *imp);

const struct auth_session_info *smb_vfs_impersonation_session_info(

const struct smb_vfs_impersonation *imp);

const struct lpcfg_substitution *smb_vfs_impersonation_substitution(

const struct smb_vfs_impersonation *imp);

Impersonation helper functions for the new impersonation model (they use the cache-id to avoid overhead):

NTSTATUS smb_vfs_impersonate_unix_token(const struct smb_vfs_impersonation *imp);

void smb_vfs_impersonation_cache_reset(void);

Stefan Metzmacher Async VFS Future (14/18)

Future Impersonation Model (2)

I Introducing lpcfg substitution to avoid global state
I It is complex to keep the global state for substitutions like %U, %L
I We have 54 global and 27 per share options with substitution support
I We can remove the substitution support for some of them
I The rest will be converted to require an explicit lpcfg substitution

Creation functions for the new impersonation model (A unique 64-bit cache-id is assigned):

NTSTATUS smb_vfs_impersonation_create(TALLOC_CTX *mem_ctx ,

const struct auth_session_info *session_info ,

const struct lpcfg_substitution *substitution ,

struct smb_vfs_impersonation **_imp);

struct smb_vfs_impersonation *smb_vfs_impersonation_ref(TALLOC_CTX *mem_ctx ,

const struct smb_vfs_impersonation *imp);

const struct auth_session_info *smb_vfs_impersonation_session_info(

const struct smb_vfs_impersonation *imp);

const struct lpcfg_substitution *smb_vfs_impersonation_substitution(

const struct smb_vfs_impersonation *imp);

Impersonation helper functions for the new impersonation model (they use the cache-id to avoid overhead):

NTSTATUS smb_vfs_impersonate_unix_token(const struct smb_vfs_impersonation *imp);

void smb_vfs_impersonation_cache_reset(void);

Stefan Metzmacher Async VFS Future (14/18)

Future Impersonation Model (2)

I Introducing lpcfg substitution to avoid global state
I It is complex to keep the global state for substitutions like %U, %L
I We have 54 global and 27 per share options with substitution support
I We can remove the substitution support for some of them
I The rest will be converted to require an explicit lpcfg substitution

Creation functions for the new impersonation model (A unique 64-bit cache-id is assigned):

NTSTATUS smb_vfs_impersonation_create(TALLOC_CTX *mem_ctx ,

const struct auth_session_info *session_info ,

const struct lpcfg_substitution *substitution ,

struct smb_vfs_impersonation **_imp);

struct smb_vfs_impersonation *smb_vfs_impersonation_ref(TALLOC_CTX *mem_ctx ,

const struct smb_vfs_impersonation *imp);

const struct auth_session_info *smb_vfs_impersonation_session_info(

const struct smb_vfs_impersonation *imp);

const struct lpcfg_substitution *smb_vfs_impersonation_substitution(

const struct smb_vfs_impersonation *imp);

Impersonation helper functions for the new impersonation model (they use the cache-id to avoid overhead):

NTSTATUS smb_vfs_impersonate_unix_token(const struct smb_vfs_impersonation *imp);

void smb_vfs_impersonation_cache_reset(void);

Stefan Metzmacher Async VFS Future (14/18)

Future Impersonation Model (3)

I Introducing simple syscall wrapper and blacklist defines
I It would still be complex if modules have to impersonate explicitly
I smb vfs impersonate unix token() will typically be hidden
I SMB VFS modules won’t ever call syscalls directly

The syscall wrappers and defines to detect direct syscalls:

#define __SMB_VFS_IMPERSONATE_UNIX_TOKEN_CHECK_ERRNO(__imp , __ret_errno) do { \

NTSTATUS status; \

status = smb_vfs_impersonate_unix_token(__imp); \

if (! NT_STATUS_IS_OK(status)) { \

errno = __ret_errno; \

return -1; \

} \

} while (0)

static inline int smb_vfs_sys_renameat(const struct smb_vfs_impersonation *imp ,

int olddirfd , const char *oldpath ,

int newdirfd , const char *newpath)

{

__SMB_VFS_IMPERSONATE_UNIX_TOKEN_CHECK_ERRNO(imp , EPERM);

return renameat(olddirfd , oldpath , newdirfd , newpath);

}

#define renameat __error_please_use_smb_vfs_sys_renameat

Stefan Metzmacher Async VFS Future (15/18)

Future Impersonation Model (3)

I Introducing simple syscall wrapper and blacklist defines
I It would still be complex if modules have to impersonate explicitly
I smb vfs impersonate unix token() will typically be hidden
I SMB VFS modules won’t ever call syscalls directly

The syscall wrappers and defines to detect direct syscalls:

#define __SMB_VFS_IMPERSONATE_UNIX_TOKEN_CHECK_ERRNO(__imp , __ret_errno) do { \

NTSTATUS status; \

status = smb_vfs_impersonate_unix_token(__imp); \

if (! NT_STATUS_IS_OK(status)) { \

errno = __ret_errno; \

return -1; \

} \

} while (0)

static inline int smb_vfs_sys_renameat(const struct smb_vfs_impersonation *imp ,

int olddirfd , const char *oldpath ,

int newdirfd , const char *newpath)

{

__SMB_VFS_IMPERSONATE_UNIX_TOKEN_CHECK_ERRNO(imp , EPERM);

return renameat(olddirfd , oldpath , newdirfd , newpath);

}

#define renameat __error_please_use_smb_vfs_sys_renameat

Stefan Metzmacher Async VFS Future (15/18)

Make every VFS operation async (1)
I We would like to have all operations async

I We have OEMs who use Samba as a gateway to cloud storage
I Others may also need HSM were tapes or slow disks are used

I Modern storage is very fast
I NVMe SSDs and Persistent Memory requires minimal overhead
I Maintaining tevent req states at multiple levels adds overhead
I Going async is not needed and a waste of ressources

3 calls per operation, STATUS DRIVER BLOCKED (or EWOULDBLOCK) triggers the async path:

(Modules can implement sync fn and/or send/recv fn)

int (* mkdirat_sync_fn)(struct vfs_handle_struct *handle ,

const struct smb_vfs_impersonation *imp ,

struct files_struct *dirfsp ,

const struct smb_filename *smb_fname ,

mode_t mode);

struct tevent_req *(* mkdirat_send_fn)(TALLOC_CTX *mem_ctx ,

struct vfs_handle_struct *handle ,

const struct smb_vfs_impersonation *imp ,

struct files_struct *dirfsp ,

const struct smb_filename *smb_fname ,

mode_t mode);

int (* mkdirat_recv_fn)(struct tevent_req *req , struct vfs_aio_state *state);

Stefan Metzmacher Async VFS Future (16/18)

Make every VFS operation async (1)
I We would like to have all operations async

I We have OEMs who use Samba as a gateway to cloud storage
I Others may also need HSM were tapes or slow disks are used

I Modern storage is very fast
I NVMe SSDs and Persistent Memory requires minimal overhead
I Maintaining tevent req states at multiple levels adds overhead
I Going async is not needed and a waste of ressources

3 calls per operation, STATUS DRIVER BLOCKED (or EWOULDBLOCK) triggers the async path:

(Modules can implement sync fn and/or send/recv fn)

int (* mkdirat_sync_fn)(struct vfs_handle_struct *handle ,

const struct smb_vfs_impersonation *imp ,

struct files_struct *dirfsp ,

const struct smb_filename *smb_fname ,

mode_t mode);

struct tevent_req *(* mkdirat_send_fn)(TALLOC_CTX *mem_ctx ,

struct vfs_handle_struct *handle ,

const struct smb_vfs_impersonation *imp ,

struct files_struct *dirfsp ,

const struct smb_filename *smb_fname ,

mode_t mode);

int (* mkdirat_recv_fn)(struct tevent_req *req , struct vfs_aio_state *state);

Stefan Metzmacher Async VFS Future (16/18)

Make every VFS operation async (1)
I We would like to have all operations async

I We have OEMs who use Samba as a gateway to cloud storage
I Others may also need HSM were tapes or slow disks are used

I Modern storage is very fast
I NVMe SSDs and Persistent Memory requires minimal overhead
I Maintaining tevent req states at multiple levels adds overhead
I Going async is not needed and a waste of ressources

3 calls per operation, STATUS DRIVER BLOCKED (or EWOULDBLOCK) triggers the async path:

(Modules can implement sync fn and/or send/recv fn)

int (* mkdirat_sync_fn)(struct vfs_handle_struct *handle ,

const struct smb_vfs_impersonation *imp ,

struct files_struct *dirfsp ,

const struct smb_filename *smb_fname ,

mode_t mode);

struct tevent_req *(* mkdirat_send_fn)(TALLOC_CTX *mem_ctx ,

struct vfs_handle_struct *handle ,

const struct smb_vfs_impersonation *imp ,

struct files_struct *dirfsp ,

const struct smb_filename *smb_fname ,

mode_t mode);

int (* mkdirat_recv_fn)(struct tevent_req *req , struct vfs_aio_state *state);

Stefan Metzmacher Async VFS Future (16/18)

Make every VFS operation async (2)

I Things get more complicated with database locks
I For various operations we need to have our open file database locked
I This prevents races, e.g. in case multiple low level operations are

needed

I Updating the byte range lock database is such an operation
I Samba 4.11 brings the posibility to implement async backends
I For now we use a different model without tevent req
I SMB VFS BRL LOCK WINDOWS() can return NT STATUS RETRY

The SMB VFS call is unchanged, but we now have helper functions to identify the request and remember state for it:

NTSTATUS (* brl_lock_windows_fn)(struct vfs_handle_struct *handle ,

struct byte_range_lock *br_lck ,

struct lock_struct *plock);

TALLOC_CTX *brl_req_mem_ctx(const struct byte_range_lock *brl);

const struct GUID *brl_req_guid(const struct byte_range_lock *brl);

Stefan Metzmacher Async VFS Future (17/18)

Make every VFS operation async (2)

I Things get more complicated with database locks
I For various operations we need to have our open file database locked
I This prevents races, e.g. in case multiple low level operations are

needed

I Updating the byte range lock database is such an operation
I Samba 4.11 brings the posibility to implement async backends
I For now we use a different model without tevent req
I SMB VFS BRL LOCK WINDOWS() can return NT STATUS RETRY

The SMB VFS call is unchanged, but we now have helper functions to identify the request and remember state for it:

NTSTATUS (* brl_lock_windows_fn)(struct vfs_handle_struct *handle ,

struct byte_range_lock *br_lck ,

struct lock_struct *plock);

TALLOC_CTX *brl_req_mem_ctx(const struct byte_range_lock *brl);

const struct GUID *brl_req_guid(const struct byte_range_lock *brl);

Stefan Metzmacher Async VFS Future (17/18)

Make every VFS operation async (2)

I Things get more complicated with database locks
I For various operations we need to have our open file database locked
I This prevents races, e.g. in case multiple low level operations are

needed

I Updating the byte range lock database is such an operation
I Samba 4.11 brings the posibility to implement async backends
I For now we use a different model without tevent req
I SMB VFS BRL LOCK WINDOWS() can return NT STATUS RETRY

The SMB VFS call is unchanged, but we now have helper functions to identify the request and remember state for it:

NTSTATUS (* brl_lock_windows_fn)(struct vfs_handle_struct *handle ,

struct byte_range_lock *br_lck ,

struct lock_struct *plock);

TALLOC_CTX *brl_req_mem_ctx(const struct byte_range_lock *brl);

const struct GUID *brl_req_guid(const struct byte_range_lock *brl);

Stefan Metzmacher Async VFS Future (17/18)

Questions?

I Stefan Metzmacher, metze@samba.org

I https://www.sernet.com

I https://samba.plus

→ SerNet/SAMBA+ sponsor booth

Slides: https://samba.org/˜metze/presentations/2019/SDC/

Stefan Metzmacher Async VFS Future (18/18)

https://www.sernet.com
https://samba.plus
https://www.sernet.com
https://samba.plus
https://samba.org/~metze/presentations/2019/SDC/

