
Writing a Samba VFS
Richard Sharpe

2-Oct-2011

Table of Contents
0Document History..1
1Introduction..2
2The Samba VFS...2
3Two Types of File Systems..5
4Writing a VFS Module...6

4.1VFS Module Initialization..7
4.2VFS Function Pointer Structure...8
4.3Include Files...8
4.4VFS Functions..9
4.5The Life Cycle of a VFS..9
4.6A note on using talloc...10
4.7Providing Context between Calls...11
4.8Module Specific Parameters...12
4.9Extending the Samba files_struct...12
4.10AIO Handling in a VFS Module..13
4.11Conforming to the VFS interfaces..14
4.12Be prepared for “stat” opens..14
4.13Things to watch out for..14

5Some Existing VFS Modules...14
6Building, Installing and Debugging your VFS Module...15

6.1Building your VFS Module..15
Building in a git Tree..15
Building in a Source Tarball Tree..17
Building in your own VFS Source Tree...17
Building VFS Modules Statically...17

6.2Installing your VFS Module...17
6.3Debugging your VFS Module..18

7Adding New VFS Routines..19

0 Document History

2-Oct-2011 Version 1.0 Completed 9-Nov-2011

13-Nov-2011 Version 1.1 Completed 13-Nov-2011. Include info on building out of the Samba
source tree.

5-Dec-2011 Version 1.2 Completed 5-Dec-2011. Move some material where it belongs and add
references to some additional smb.conf parameter parsing routines.

27-Dec-2011 Version 1.3. Added comments about static modules and module init function when
building out of the Samba source tree.

31-Dec-2011 Version 1.4. Added comments about the different module init function names
between master and earlier versions as pointed out by Barry Pederson.

25-Mar-2012 Add comments on talloc and point to improvements for out-of-tree modules.

16-Sep-2012 Add comments about “stat” opens and things to watch out for.

1 Introduction
This document was written to fill a void that I saw in information about the Samba Virtual File System
(VFS). There seems to be no single document that those who want to write a Samba VFS module can
use to obtain enough understanding to make the process run smoothly.

In the rest of this document I:

1. Provide an outline of the Samba VFS and show the interactions between the main Samba code,
the VFS layer, VFS modules, and the underlying OS.

2. Discuss two different types of file systems that module writers might want to write a VFS
module for.

3. Provide more detail on actually writing a Samba VFS and some of the functions and macros
Samba makes available to help you.

4. Discuss some existing VFS modules, especially in the context of the two file system types
outlined above.

5. Give details on the steps module writes will have to take to add their code and build their
module.

6. Provide some information on adding additional VFS routines over and above those already
provided.

Please note that this document currently only discusses the Samba 3 VFS layer! It is also not a
tutorial, so you will have to have some level of understanding of Samba and file systems.

2 The Samba VFS
The Samba VFS provides a mechanism to allow programmers to extend the functionality of Samba in
useful ways. Some examples are:

• Convert NTFS ACLs to NFSv4 ACLs for storing in a file system that supports them. The GPFS
VFS module does this and the same could be done for Linux when RichACL support is
complete.

• Support features that a vendor has implemented in their file system that Linux file systems do
not support. The OneFS VFS module from Isilon interfaces with their in-kernel distributed file
system which provides more complete NTFS functionality, including four file times, etc.

• Implement features like Alternate Data Streams.
• Implement full NT ACL support by storing them in XATTRs and correctly handling the

semantics (see source3/modules/vfs_acl_xattr.c and source3/modules/vfs_acl_common.c.)
• Support user-space file systems, perhaps accessible via a shared memory interface or via a user-

space library (eg, Ceph's libceph.)

A Samba VFS is a shared library (xxx.so), or module, that implements some or all of the functions that
the Samba VFS interface make available and provides the desired functionality. In addition VFS
modules can be stacked (if they have been written for that), and there is a default VFS
(source3/modules/vfs_default.c) that provides the default Samba functionality for those functions that
are not implemented higher in the stack or that earlier modules also call.

NOTE! Samba also makes it possible to use VFS modules statically on those systems that do not
support shared libraries. Brief comments about this are included at the end of this document.

The following diagrams help illustrate some of the concepts in more detail.

Figure 1 shows how control flows within Samba and through a VFS module. The steps are similar to
the following:

1. An SMB request comes into Samba, which results in samba calling a VFS routine. The call is

Figure 1: Basic Samba VFS Illustration

Samba

VFS Layer System Layer

vfs_mod_1.so

vfs_default.c

Kernel
User

vfs_mod_2.so

vfs_mod_3.so

SMB Req SMB Rsp

1

2

3 4

2

5 678

9

10

via a macro in the source code that looks like SMB_VFS_XXX, eg, SMB_VFS_STAT to
retrieve file metadata.

2. The VFS layer calls the entry point in the first VFS module in the stack that implements the
requested function.

3. If the called function needs the functionality provided by other modules in the stack, it calls
VFS_SMB_NEXT_XXX, which in the illustration ends up in the default VFS module,
vfs_default.c.

4. The entry points in the default VFS module typically call functions in the system layer, eg,
sys_stat.

5. The system module calls into the kernel via a system call, eg, the stat system call.
6. The system call returns to the system module, which
7. Returns to the function in vfs_default.c that called the system layer, which
8. Returns up the stack to the VFS module, which
9. Returns to the main Samba code
10. Which formats and sends an SMB Response.

It should be noted that the Samba VFS interface contains some 120 different functions and that a VFS
does not have to implement them all (with an exception noted below.) If a module does not implement
a particular VFS function, the required function within vfs_default.c will be called. However, it
should be pointed out that if your module implements a particular request in its entirety, then it
does not need to invoke functions below it in the stack. Further, functions below it in the stack
are not automatically invoked, rather, the module writer must explicitly invoke modules below it
in the stack by calling the NEXT module.

The Samba VFS functions can be separated into the following classes:

1. Disk, or file system operations, like mounting and unmounting functions (actually called
connect and disconnect), quota and free space handling routines, a statvfs function, and so forth.

2. Directory operations, like opendir, readdir, mkdir, etc.
3. File operations. This is the largest class of VFS functions, and includes functions for opening

and closing files, reading and writing files, obtaining metadata information, and all the other
operations you can perform on a file.

4. NT ACL operations, like setting and getting an NT ACL on a file or directory. These functions
actually deal in security descriptors, which can contain ACLs.

5. POSIX ACL operations, for setting POSIX acls on files.
6. Extended Attribute operations, for setting and retrieving XATTRs on files.
7. AIO operations, for handling asynchronous operations.
8. Offline operations, for handling offline operations.

You tell Samba about any VFS modules you want used for a share in the smb.conf file. You do this
with the vfs objects parameter for those shares you want to use VFS modules for.

For example:

[global]

...

[share1]

 path = /some/path
 vfs objects = acl_xattr my_vfs_obj

In this example we have specified that the share share1 uses two VFS objects in the order they are
listed:

1. A VFS object called acl_xattr. Any VFS functions this object implements will be called first. If
they call a NEXT function, that function in the next module in the stack will be called. See
below for more details on the NEXT function.

2. A VFS object called my_vfs_obj. Functions in the my_vfs_obj VFS module will be called if
they are not implemented in the acl_xattr module, or if the acl_xattr module explicitly calls the
NEXT function and there is one in the my_vfs_obj VFS module.

Any VFS function not implemented in any VFS module in the stack is handled in vfs_default.c.

3 Two Types of File Systems
From the point of view of Samba there are two types of file systems:

1. A file system that is accessed via system calls and for which the system provides file
descriptors, and

2. A file system that is accessed from user space, typically via a user-space library.

The reason for distinguishing between these two types of file system is the following. Many Samba
VFS routines deal with file descriptors (FDs). Any VFS for a user-space file system provides file
descriptors that the kernel does not understand (it possibly supplies an index into a table of objects
that are managed by the VFS.) For that reason, a VFS module for a user-space file system must
implement all VFS routines and cannot forward any requests to the default VFS module, because the
default VFS module will eventually result in calling a system call with a file descriptor that the kernel
knows nothing about, or knows about but it is not the intended file descriptor, and you could end up
closing some random file with unintended results.

This also means that a VFS module for a user-space file system must be the last module in the stack.

Figure 2 illustrates a VFS module for accessing a file system in user space. Such a file system might be
accessed via NFS requests directly to an NFS server (on the same computer, or a different computer) or
via a shared memory segment, etc. The essential point is that such a module must implement all VFS
functions and not let any fall through to vfs_default.c.

Note: From the point of view of Samba a FUSE file system is not a user-space file system, since it is
accessed by system calls just like file systems implemented in the kernel and it makes available kernel-
visible FDs.

4 Writing a VFS Module
Before writing your own Samba VFS module have a look at the existing modules to see if any
combination (stack) of existing modules supplies the functionality you need, or if any existing module
supplies some of the functionality you need. For example, if you are thinking of storing Security

Figure 2: Accessing a File System in User Space

Samba

VFS Layer System Layer

vfs_mod_1.so

vfs_default.c

vfs_mod_2.so

SMB Req SMB Rsp

1

2

3

4

2

56

7

8

vfs_my_module.so

User-Space
File System
(not part of

Samba)

Descriptors (AKA NT ACLS) in XATTR-like objects in your file system, there is already a module for
doing that called acl_xattr. As long as you provide it with a way to store XATTRs, and do a few other
things, it should work and already does all the hard work for you. The source code for all the VFS
modules is in source3/modules.

When you write a VFS module you supply three things:

1. A module initialization routine that tells Samba what VFS routines are handled by this module.
This routine is called something like vfs_my_module_init, and its signature is specified below.

2. A VFS function pointers structure (vfs_fn_pointer) to the VFS routines implemented in this
module. By using standard C89 initialization, you only initialize this structure with pointers to
the functions you actually implement.

3. The actual VFS functions you implement along with any supporting functions, etc.

However, first you have to give it a name and place the code in a file. If you are building your module
within the Samba source tree it will need to be placed in the directory source3/modules, and the main
file (the one that contains your module's initialization routine as mentioned below) must be called:

vfs_<module_name>.c

For example, vfs_my_module.c. The remainder of this document will use this name in the examples.
The rest of this section deals with:

1. VFS Module Initialization,
2. VFS Function Pointer Structure,
3. Include Files,
4. The VFS Functions,
5. The Life Cycle of a VFS,
6. Providing Context between Calls,
7. Module-specific Parameters, and
8. Extending the Samba files_struct

4.1 VFS Module Initialization

Your module must contain an entry point called vfs_my_module_init, which the build system
will actually convert to samba_init_module or init_samba_module if you are
building your module as a shared library. (Actually, the name depends on the version as
explained below, and if your module is static, you must use one of samba_init_module or
init_samba_module. However, see not below for a solution to this complexity)

The initialization routine has one simple task to perform: Register itself along with the set of functions
it implements. The following is an example:

NTSTATUS vfs_my_module_init(void)
{
 return smb_register_vfs(SMB_VFS_INTERFACE_VERSION, "my_module",
 &vfs_my_module_fns);
}

The things to note are:

1. As mentioned above, this function must be called vfs_<module_name>_init, it returns an
NTSTATUS and does not take any parameters.

2. It returns the result of calling smb_register_vfs with three variables as shown.
3. You can name the variable that contains the functions you implement anything you want,

however the practice has been to name it as shown.
4. If registration fails, none of the routines in your module will be called, but there are likely to be

bigger problems, in that case.

This code can be cut from an existing module and pasted into yours with the appropriate changes made.

NOTE! If your module has undefined symbols, then Samba will not even call your module's init
function, and attempts to connect to the share will fail.

NOTE Also! If you are building your module outside the Samba source tree (and not changing
configure.in, as described below) you can call this function samba_init_module in the
master branch or init_samba_module in earlier versions (3.5.x and 3.6.x). However, there is
now a way of avoiding these naming problems for modules that are build outside the Samba source
tree. See bug #8822 at http://bugzilla.samba.org.

The next section deals with how to declare and initialize the function pointer structure that you need to
declare.

4.2 VFS Function Pointer Structure

Your module must declare and initialize a struct vfs_fn_pointers structure. The following is an
example.

static struct vfs_fn_pointers vfs_my_module_fns = {
 .getxattr = my_module_getxattr,
 .fgetxattr = my_module_fgetxattr,
 .setxattr = my_module_setxattr,
 .fsetxattr = my_module_fsetxattr,
 .listxattr = my_module_listxattr,
};

The variable must be declared static so that it does not cause conflicts with any symbol exported by
Samba or any other module. In addition, you only need to initialize pointers to just those VFS functions
you are implementing (using the C89 initialization syntax.)

You would generally declare this variable before you declare the init function discussed above.

4.3 Include Files

Your module will need to invoke some include files. You will need includes.h, but you might also
need to include a few more:

• system/filesys.h if you need access to many of the file system calls, like fcntl, etc. See
lib/replace/system/filesys.h to determine what system include files this file pulls in.

• smbd/smbd.h if you need access to definitions for NT ACLs etc.

These will all need to be included before your code.

4.4 VFS Functions

These are the meat of your Samba VFS module and I can only provide generic information here.

Functions in Samba modules return several different types:

1. int return values, in which case a value less than zero means an error has occurred, and the error
value is available in errno, or

2. NTSTATUS return value. Here, if the underlying functions you are calling communicate errors
through errno then you have to convert them to NTSTATUS values using
map_nt_error_from_unix, or

3. Pointers to things like SMB_STRUCT_DIR where you return NULL to indicate an error and set
errno to a UNIX error.

If your functions are adding functionality to that already provided by Samba or existing modules in the
stack (after your module) you will generally make to calls to SMB_VFS_NEXT_XXX, where XXX is
the name of the function you are providing (eg, UNLINK if you are providing UNLINK functionality,
in which case you will call SMB_VFS_NEXT_UNLINK.

You can also call any other VFS function that is relevant, eg SMB_VFS_STAT, but you will have to
ensure that you pass the correct parameters, eg:

ret = SMB_VFS_STAT(handle->conn, smb_fname_cpath);

This brings us to the parameters that your functions will have to deal with. The first parameter passed
to each Samba VFS function is a pointer to vfs_handle_struct, which contains information you might
need, like the connection structure (share, etc) that the request relates to, and so forth. Another
parameter you might receive is a pointer to a files_struct or a struct filename_struct. Others that you
might also receive include character strings for paths, integer values, etc. You should peruse existing
Samba VFS functions to see some of the values you might receive.

In addition, you should be aware that Samba has an extended STAT structure, SMB_STRUCT_STAT.
In some versions of Samba (3.6.0 and above, I think) you can use init_stat_ex_from_stat to convert a
normal Unix struct stat variable into an SMB_STRUCT_STAT for return to Samba. However, if the
underlying module you are extending has its own extended stat structure that is not compatible with
SMB_STRUCT_STAT you will have to supply a routine to convert your stat struct to an
SMB_STRUCT_STAT (see, for example, modules/onefs_streams.c::onefs_fstat for an
example.)

4.5 The Life Cycle of a VFS

When a client issues a TREE_CONNECT request (either because of a NET USE command or mapping
a network drive) samba calls SMB_VFS_CONNECT which results in the connect_fn in your VFS
module (if defined) being called.

The connect_fn has the following signature (the name of the function can be anything you like):

static int my_module_connect(vfs_handle_struct *handle,

 const char *service,

 const char *user)

This call gives you the opportunity to create and save context information for calls to other functions.

If your module is not designed to be the last in the stack then your connect_fn should give other
modules a chance to capture connection information as well, using:

 int ret = SMB_VFS_NEXT_CONNECT(handle, service, user);

of course, you should check the return code and cleanup if an error occurs in a lower module.

When the client disconnects from the share that your VFS module is connected to, Samba will call your
disconnect function:

static void my_module_disconnect(vfs_handle_struct *handle)

{

/* Perform whatever actions are needed here */

}

In general you do not need to clean up memory allocated with talloc in your connection module if that
memory was allocated using the connection structure (handle->conn) as a context, as it will all be
cleaned up when the connection structure is freed with TALLOC_FREE.

Of course, if your module has no need to capture connection and disconnection events, you do not need
to define these routines.

Between these two calls, Samba will call the functions you have defined as necessary passing them the
same vfs_handle_struct on each call.

4.6 A note on using talloc

You should have an understanding of talloc if you work on Samba VFS modules. You can find more
information on the whole talloc library in <source-dir>/lib/talloc/talloc_guide.txt. Because talloc is a
hierarchical allocation system that allows you to free all allocations within a single context with one
call to talloc_free, it makes memory management much easier. To do this, talloc makes use of talloc
contexts to keep track of allocations.

You should consider the following rules of thumb:

1. Always use talloc routines rather than malloc, calloc, etc.

2. Some VFS routines are called with a talloc context as one of their arguments. You should use
the supplied talloc context for all allocations in such routines unless you have a good reason to
use a different context.

3. If the memory you are allocating needs to survive until the client disconnects from the share,
then use the connection structure, handle->conn, as your talloc context.

4. If the memory you are allocating needs to survive for the duration of an open file, then use the
files struct as your talloc context.

5. If the memory you are allocating will be used in a separate thread and needs to survive beyond
any of the other contexts mentioned here, create a new talloc context with talloc_new(NULL).
Of course, you are responsible then to call talloc_free on the context at some time in order to
clean up the memory.

6. If the memory you are allocating should be de-allocated somewhere above you or when the
current SMB requests (that provoked the VFS call) completes, then use talloc_tos().

You should note that talloc_tos() will give you the current top of stack of the stack of talloc contexts,
and the memory you have allocated using talloc_tos() as a context will be freed as soon as the current
talloc stack frame goes away. You can always, of course, explicitly free memory you know is no longer
needed with talloc_free.

4.7 Providing Context between Calls

As mentioned above, the first parameter to all VFS functions is the vfs_handle_struct, which is unique
for each share and module, so you can store context information in the structure pointed to by the
handle. You can save information in the 'handle' in the following way:

config = talloc_zero(handle->conn, struct my_module_config_data);

if (!config) {

 SMB_VFS_NEXT_DISCONNECT(handle);

 DEBUG(0, ("talloc_zero() failed\n")); return -1;

 }

SMB_VFS_HANDLE_SET_DATA(handle, my_module_context_data,

 NULL, struct my_module_config_data,

 return -1);

SMB_VFS_HANDLE_SET_DATA is a macro, and its arguments are:

1. handle, the VFS handle.

2. A pointer to some data that you want to associate with the handle.

3. A pointer to a function to free the data you are saving. It is set to NULL above, which means
that this VFS module will explicitly free the data (in a disconnect function.)

4. The data type of the structure that param 2 points to.

5. A command to be executed if handle is NULL.

You can use this handle data to keep track of information relating to the file system backing the share,
or to maintain parameters related to this instance of the share, or both. It is a pointer to a structure you
declare.

You can retrieve handle data in your VFS functions subsequently using the following macro:

 SMB_VFS_HANDLE_GET_DATA(handle, config,

 struct my_module_config_data, return next);

You should also be aware of the macros SMB_VFS_HANDLE_FREE_DATA and
SMB_VFS_HANDLE_TEST_DATA. Check the include file source3/include/vfs.h.

4.8 Module Specific Parameters

You might also want to retrieve module-specific parameters from the smb.conf file in your connect
function. This can be done using:

 config->some_bool_param = lp_parm_bool(SNUM(handle->conn),

 "my_module", "someboolparam", true);

These parameters should be entered in the smb.conf file in the format:

 [global]

 ...

 my_module:someboolparam = yes

 ...

Such parameters can also appear in share sections.

There are also other parameter retrieving functions you should be aware of, like:

• lp_parm_const_string, which returns a pointer to a const string,

• lp_parm_talloc_string, which returns a pointer to a new string created with a call to a talloc
routine,

• etc.

You can find examples of these in other VFS modules and you can find all such functions in
source3/param/loadparm.c.

4.9 Extending the Samba files_struct

In addition to the above functions, you can extend Samba's files_struct with an extension of your own.
Each module in the stack can add their own extension, but only one extension can be added per file per
module. You add the extension with:

 p_var = (struct my_struct *) VFS_ADD_FSP_EXTENSION(handle,

 fsp,

 struct my_struct,

 NULL);

after which you can update the fields in the structure that you now have a pointer to.

You can fetch an extension with:

 p_var = (struct my_struct *)VFS_FETCH_FSP_EXTENSION(handle,

 fsp);

There is also VFS_REMOVE_FSP_EXTENSION and VFS_MEMCTX_FSP_EXTENSION, which
can be found in source3/include/vfs.h, although they reduce to functions in
source3/smbd/vfs.c.

You should use talloc when you allocate space for your extension and the best talloc context to use at
this point is the fsp itself because it means that your extension will be released when the fsp is released.
A good choice of talloc functions would be talloc_zero.

4.10AIO Handling in a VFS Module

Samba supports the use of AIO and provides eight VFS functions to allow VFS module writers to also
support AIO. These are:

SMB_VFS_AIO_READ This is used to initiate an AIO read request. If all went well initiating
the request, return 0, otherwise return -1 after setting errno to something
appropriate.

SMB_VFS_AIO_WRITE This is used to initiate an AIO write request. If all went well initiating
the request, return 0, otherwise return -1 after setting errno to something
appropriate.

SMB_VFS_AIO_RETURN This is used to retrieve the returned status from a successfully initiated
AIO operation. That is, whether it ultimately succeeded or failed.

SMB_VFS_AIO_CANCEL This is used to cancel an already initiated AIO operation. If you
managed to do so, return AIO_CANCELED or
AIO_NOTCANCELED, AIO_ALLDONE or -1 as appropriate and set
errno where appropriate.

SMB_VFS_AIO_ERROR This is used to retrieve the status of AIO operations that were
successfully initiated. Return EINPROGRESS, ECANCELED or an
other error to indicate an error, or 0 to indicate that the operation has
successfully completed.

SMB_VFS_AIO_FSYNC Samba 3 does not currently use this VFS routine.

SMB_VFS_AIO_SUSPEND This is used to clean up initiated AIO operations when a client drops a
connection. Consult the Samba code for more details, specifically
source3/smbd/aio.c.

SMB_VFS_AIO_FORCE This is used to tell Samba whether or not the read or write operation

Samba is about to initiate via AIO should be performed via AIO. That
is, your module gets to veto the initiation of AIO requests on a request
by request basis if it wants to. Return FALSE if you are happy to allow
the operation to be an AIO operation, otherwise return TRUE if you
don't want that operation being sent via AIO.

The default behavior is to call the standard system AIO routines, aio_read/aio_read64,
aio_write/aio_write64 and aio_return/aio_return64.

The main thing to be aware of here is that if you support AIO in your VFS module, and you do not
simply pass them on to normal kernal AIO routines (either via sys_aio_xxx routines or directly via
system calls) then you must simulate the normal AIO completion behavior. That is, you must signal
RT_SIGNAL_AIO somewhere in your module (perhaps in the async threads) when the operations
ultimately complete.

4.11Conforming to the VFS interfaces

Many of the VFS routines provide a POSIX interface. This means that they must return value of -1 if
an error has occurred and must set errno to a POSIX error value. Otherwise they should return 0 or
greater if no error has occured.

An example is SMB_VFS_GETXATTR, which is used to retrieve an XATTR on a file. If the passed in
buffer is too small to contain the XATTR on the file, the routine should return -1 as its result and set
errno to ERANGE.

Other routines return an NTSTATUS result, and you have to test them with the correct macros.

Failing to conform to the correct interface semantics can cause bad results. Generally, the compiler will
catch problems, except failing to set errno as discussed above.

4.12Be prepared for “stat” opens

There are cases where Samba will call VFS modules with an FSP that refers to a file that has not been
opened. In these cases fsp->fh->fd will contain the value -1. This can happen when Windows opens the
file with an access mode that only requests READ ATTRIBUTES, for example. Be prepared for such
cases and do not assume you will always have a valid value in fsp->fh->fd.

However, in VFS modules that must read or write files, the file you must access will already be open.

4.13Things to watch out for

1. If you enable AIO and you use threads in your VFS module, you should disable all signals in
your threads. At the very least you must disable the RT_SIGNAL_AIO signal. You can do this
with the pthread_sigmask and sigfillset functions to achieve this. (If you create your threads
after AIO requests have been initiated there is a race if you disable signals in your threads. You
should mask out all signals in the function that creates your threads and then reenable signals
after your threads are created, because threads inherit the signal mask of the creating thread.)

5 Some Existing VFS Modules
You should peruse the existing Samba VFS modules to get some idea of how others have written VFS

modules and also to find those modules that already implement functionality that you want, so you
don't have to re-implement it. The judicious use of module stacking can save you a lot of coding and
testing. You can find them all in source3/modules.

One module that is particularly interesting in this regard is the acl_xattr (and acl_tdb) module. This
module stores security descriptors (AKA NT ACLs) as blobs in XATTRs attached to files
(security.NTACL), however, it does so in an interesting way. The process it uses is to retrieve any
underlying ACL on the file by calling the next module in the stack. This underlying ACL might be
synthesized from UNIX permissions, or converted from RichACLs, etc. It then hashes the underlying
security descriptor, and when storing a new NT ACL, it includes the hash of the underlying file system
security descriptor in the blob it stores. This way, when the NT ACL is subsequently retrieved by
Windows, the acl_xattr module can check to see if anyone changed the underlying security descriptor
(permissions) and return those instead. This must be an attempt to provide some level of
interoperability with NFS.

6 Building, Installing and Debugging your VFS Module

6.1 Building your VFS Module

If you are adding your own VFS module, you can add it in the Samba source tree for building, or you
can build it outside of the Samba source tree. Here I will give suggestions for what you need to change
to get your VFS module to build in the Samba source tree.

There are two different cases, though:

1. You are building from a git source tree. That is, you did a git-clone and have checked out a
particular branch.

2. You are building from a released source tarball, eg samba-3.5.10.tar.gz.

Each of these will be dealt with in turn, however, they involve modifications to configure or
configure.in and Makefile.in, depending on which route you take.

You can also build VFS modules static if your platform does not support shared libraries.
Comments are included below on how to do this.

Building in a git Tree

If you are working within a clone of the Samba git repos (and you have created your own branch off of
an existing branch, haven't you – git checkout -b my-branch [<start-point>]) then you need to modify
configure.in to include your module in the default modules list if you want your module built by
default, and then you need to provide instructions in Makefile.in telling the Samba build system (make
for the moment) how to build your module.

Each of these are pretty much boilerplate changes.

Change source3/configure.in by searching for the symbol default_shared_modules and adding your
module to the end. You will find it looks something like this:

dnl These are preferably build shared, and static if dlopen() is not available

default_shared_modules="vfs_recycle vfs_audit vfs_extd_audit vfs_full_audit
vfs_netatalk vfs_fake_perms vfs_default_quota vfs_readonly vfs_cap vfs_expand_msdfs
vfs_shadow_copy vfs_shadow_copy2 charset_CP850 charset_CP437 auth_script

vfs_readahead vfs_xattr_tdb vfs_streams_xattr vfs_streams_depot vfs_acl_xattr
vfs_acl_tdb vfs_smb_traffic_analyzer vfs_preopen vfs_catia vfs_scannedonly"

Simply add vfs_my_module to the end of the list.

Next, you have to add several short sections to Makefile.in.

Search for the last module listed above in Makefile.in, the one before your module. You should find it
looking like this:

PERFCOUNT_ONEFS_OBJ = modules/perfcount_onefs.o

PERFCOUNT_TEST_OBJ = modules/perfcount_test.o

VFS_DIRSORT_OBJ = modules/vfs_dirsort.o

VFS_SCANNEDONLY_OBJ = modules/vfs_scannedonly.o

PLAINTEXT_AUTH_OBJ = auth/pampass.o auth/pass_check.o

and add a line that says VFS_MY_MODULE_OBJ = modules/vfs_my_module.o after the last
module and before the empty line that signals the end of the list of modules that are known about. It
might look a little different than shown depending on whether or not there are modules that are not
built by default.

Then, search further into Makefile.in for the last module again, scannedonly in this case. You will find
something like this:

bin/dirsort.@SHLIBEXT@: $(BINARY_PREREQS) $(VFS_DIRSORT_OBJ)

 @echo "Building plugin $@"

 @$(SHLD_MODULE) $(VFS_DIRSORT_OBJ)

bin/scannedonly.@SHLIBEXT@: $(BINARY_PREREQS) $(VFS_SCANNEDONLY_OBJ)

 @echo "Building plugin $@"

 @$(SHLD_MODULE) $(VFS_SCANNEDONLY_OBJ)

Add a similar section for your module, which should look something like this:

bin/scannedonly.@SHLIBEXT@: $(BINARY_PREREQS) $(VFS_SCANNEDONLY_OBJ)

 @echo "Building plugin $@"

 @$(SHLD_MODULE) $(VFS_SCANNEDONLY_OBJ)

bin/my_module.@SHLIBEXT@: $(BINARY_PREREQS) $(VFS_MY_MODULE_OBJ)

 @echo "Building plugin $@"

 @$(SHLD_MODULE) $(VFS_MY_MODULE_OBJ)

After that, simply rerun autogen.sh (to regenerate configure from configure.in) and then rerun
configure and then run make.

Note. If you do not want to modify configure.in to have your module built by default, simply make the
changes specified above to Makefile.in and have your build system build your module by using make
bin/my_module.so (or whatever the shared library suffix is on your system.)

Building in a Source Tarball Tree

If you are building from a source tarball, consider building your module outside the Samba source tree.
Instructions on doing this are provided below

However, here is how to hack the configure script and Makefile.in to achieve what you need.

Follow the instructions for building in a git source tree, but edit configure rather than configure.in,
because the symbols you are searching for are the same. Then modify Makefile.in as described above.

Finally, rerun configure, and then run make.

Building in your own VFS Source Tree

Firstly, copy the files autogen.sh, configure.in, Makefile.in, config.sub, config.guess and install-sh
from the directory examples/VFS in your Samba source tree to the directory where you keep your VFS
source files.

Next, run ./autogen.sh in the directory where you keep your VFS source files. After that, run configure
in the following way:

./configure --with-samba-source=/path/to/samba/source3

and then make.

Note! There is a bug in the configure script that makes it hard to build outside the Samba source tree.
You need to replace two instances of srcdir in configure.in with SAMBA_SOURCE. (This has been
fixed in the master branch and the fix will be rolled out in releases 3.6.3 and 3.5.13.)

Note! The module initialization function must be called samba_init_module (master) or
init_samba_module (3.5.x, 3.6.x), as discussed above. Actually, there is a fix available so that
you do not have to change the names of the module initialization functions when you build your
modules outside the Samba source tree. See http://bugzilla.samba.org bug number 8822 for details,
These changes will likely be rolled out in future versions of Samba 3.6.x and 3.5.x.

Building VFS Modules Statically

You can also build VFS modules statically. The code is essentially the same as already discussed
above. All you have to do is list the modules you want built into Samba in configure.in. To do this, add
them to the variable default_static_modules:

default_static_modules=”$default_static_modules vfs_my_module”

after the last entry for default_static_modules and then run (or rerun) autogen.sh, configure, etc.

NOTE! No spaces on either side of the assignment. It's a shell script you are modifying.

6.2 Installing your VFS Module

Your VFS module will be installed in (or should be copied to):

1. /usr/lib64/samba/vfs if you build for an RPM-based Linux system,

2. /usr/local/samba/lib/vfs if you build for an FHS-based Linux system.

It might also be installed elsewhere depending on your environment.\

http://bugzilla.samba.org/

6.3 Debugging your VFS Module

It is relatively easy to debug your VFS module, and here are some steps that might prove useful:

1. The first thing to check is that your module is attaching and detaching correctly. You can do
this with smbclient, eg:

smbclient //localhost/some-share -Usomeuser%somepass

After then, check that you get a normal smbclient prompt, exit, and then check the log files for
errors or crashes in your VFS module. You might want 'debug level = 10' in the smb.conf file
for this. If you get a core file, use gdb to inspect the core file.

2. Once that piece works, use smbclient commands to check that the basics work, eg, that you can
list directories with the ls command, or that you can copy files.

3. Finally, from a Windows client, connect to the same share as above and perform the appropriate
tests.

Some versions of Samba on Linux would not generate core files (because of a bug to do with Linux not
allowing core files by default after programs have used setreuid et al), although that has been fixed in
recent versions of Samba. In any event, if you find that you are not getting core files, you can use this
alternative. Specify a 'panic action = sleep 999999' in the smb.conf file. This causes Samba to pause for
a long time in its SIGSEGV handler, which will allow you time to find the errant process and attach
with gdb so you can get stack traces etc.

The following shows the sort of error you will see if your VFS module has symbol issues such that
Samba cannot load the shared library:

smbclient //localhost/some-share -Usomeuser%somepass

Domain=[WORKGROUP] OS=[Unix] Server=[Samba 3.5.11-79.fc14]

tree connect failed: NT_STATUS_BAD_NETWORK_NAME

Of course, this could be caused by any number of problems, so you should look in the Samba log file to
check. If you see this:

[2011/11/09 07:23:45.511963, 5] lib/module.c:130(smb_probe_module)

 Probing module 'bad_object': Trying to load from /usr/lib64/samba/vfs/bad_object.so

[2011/11/09 07:23:45.521393, 3] lib/module.c:48(do_smb_load_module)

 Error loading module '/usr/lib64/samba/vfs/bad_object.so':
/usr/lib64/samba/vfs/bad_object.so: cannot open shared object file: No such file or
directory

[2011/11/09 07:23:45.521584, 0] smbd/vfs.c:167(vfs_init_custom)

 error probing vfs module 'bad_object': NT_STATUS_UNSUCCESSFUL

[2011/11/09 07:23:45.522427, 0] smbd/vfs.c:309(smbd_vfs_init)

 smbd_vfs_init: vfs_init_custom failed for bad_object

[2011/11/09 07:23:45.522825, 0] smbd/service.c:846(make_connection_snum)

 vfs_init failed for service data

[2011/11/09 07:23:45.524106, 3] smbd/error.c:80(error_packet_set)

 error packet at smbd/reply.c(795) cmd=117 (SMBtconX)
NT_STATUS_BAD_NETWORK_NAME

From which we can see that there is something wrong with the name of the VFS module in this case, or
you have not moved your module to its correct location.

This also brings us to an additional debugging technique. Your VFS modules should make liberal use
of the Samba DEBUG macro, probably at level 10, to print out useful info. You can then set 'debug
level = 10' in your smb.conf while you are debugging to see when your VFS routines are being called
and what they are doing.

7 Adding New VFS Routines
On very rare occasions you need to add new VFS Functionality, which you would do by adding one or
more new VFS functions. This allows you to minimize the changes you need to make to Samba and
keep the bulk of those changes in a separate module that might be easier to manage.

One such case was the recent moving of FSCTL handling into the VFS.

Here I will show you all the files that were modified to achieve this, and it will consist mostly of
patches.

Firstly, modify source3/include/vfs.h to bump the version number (if you don't want old versions of the
VFS to load against your new build) and modify the structure definition for the VFS function pointers
to add your new VFS routine:

--- a/source3/include/vfs.h
+++ b/source3/include/vfs.h
@@ -136,6 +136,7 @@
 /* Leave at 28 - not yet released. Rename open function to open_fn. - gd */
 /* Leave at 28 - not yet released. Make getwd function always return malloced m
emory. JRA. */
 /* Bump to version 29 - Samba 3.6.0 will ship with interface version 28. */
+/* Leave at 29 - not yet releases. Add fsctl. Richard Sharpe */
 #define SMB_VFS_INTERFACE_VERSION 29

 /*
@@ -329,6 +330,17 @@ struct vfs_fn_pointers {
 TALLOC_CTX *mem_ctx,
 char **mapped_name);

+ NTSTATUS (*fsctl)(struct vfs_handle_struct *handle,
+ struct files_struct *fsp,
+ TALLOC_CTX *ctx,
+ uint32_t function,
+ uint16_t req_flags,
+ const uint8_t *_in_data,
+ uint32_t in_len,
+ uint8_t **_out_data,
+ uint32_t max_out_len,
+ uint32_t *out_len);
+
 /* NT ACL operations. */

 NTSTATUS (*fget_nt_acl)(struct vfs_handle_struct *handle,

@@ -692,6 +704,16 @@ NTSTATUS smb_vfs_call_translate_name(
 structvfs_handle_stru ct *handle,

 enum vfs_translate_direction direction,
 TALLOC_CTX *mem_ctx,
 char **mapped_name);
+NTSTATUS smb_vfs_call_fsctl(struct vfs_handle_struct *handle,
+ struct files_struct *fsp,
+ TALLOC_CTX *ctx,
+ uint32_t function,
+ uint16_t req_flags,
+ const uint8_t *_in_data,
+ uint32_t in_len,
+ uint8_t **_out_data,
+ uint32_t max_out_len,
+ uint32_t *out_len);
 NTSTATUS smb_vfs_call_fget_nt_acl(struct vfs_handle_struct *handle,
 struct files_struct *fsp,
 uint32 security_info,

Note, that here there are three things to do. The name of the second function you are defining is based
on the name of your routine in an obvious way.

Secondly, modify source3/include/vfs_macros.h to define the two macros that will be used to call your
VFS routine:

--- a/source3/include/vfs_macros.h
+++ b/source3/include/vfs_macros.h
@@ -364,6 +364,12 @@
 #define SMB_VFS_NEXT_TRANSLATE_NAME(handle, name, direction, mem_ctx,
mapped_na me) \
 smb_vfs_call_translate_name((handle)->next, (name), (direction), (mem_ct x),
(mapped_name))

+#define SMB_VFS_FSCTL(fsp, ctx, function, req_flags, in_data, in_len, out_data,
max_out_len, out_len) \
+ smb_vfs_call_fsctl((fsp)->conn->vfs_handles, (fsp), (ctx), (function), (req_flags),
(in_data), (in_len), (out_data), (max_out_len), (out_len))
+
+#define SMB_VFS_NEXT_FSCTL(handle, fsp, ctx, function, req_flags, in_data, in_l en,
out_data, max_out_len, out_len) \
+ smb_vfs_call_fsctl((handle)->next, (fsp), (ctx), (function), (req_flags) , (in_data),
(in_len), (out_data), (max_out_len), (out_len))
+
 #define SMB_VFS_FGET_NT_ACL(fsp, security_info, ppdesc) \

smb_vfs_call_fget_nt_acl((fsp)->conn->vfs_handles, (fsp), (security_info),
(ppdesc))
 #define SMB_VFS_NEXT_FGET_NT_ACL(handle, fsp, security_info, ppdesc) \

Again, it should be fairly obvious what to add, and the number of parameters and their order should
match those for your new VFS routine.

Thirdly, modify source3/modules/vfs_default.c to provide a default implementation of this new VFS
routine. I will not include any code because there are lots of examples of what such a routine should
look like in that file.

Fourthly, and lastly, modify sourc3/smbd/vfs.c to include an implementation of the vfs call function
you defined above in step 2:

--- a/source3/smbd/vfs.c
+++ b/source3/smbd/vfs.c
@@ -1721,6 +1721,23 @@ NTSTATUS smb_vfs_call_translate_name(struct
vfs_handle_st ruct *handle,
 mapped_name);
}

+NTSTATUS smb_vfs_call_fsctl(struct vfs_handle_struct *handle,
+ struct files_struct *fsp,
+ TALLOC_CTX *ctx,
+ uint32_t function,
+ uint16_t req_flags,
+ const uint8_t *in_data,
+ uint32_t in_len,
+ uint8_t **out_data,
+ uint32_t max_out_len,
+ uint32_t *out_len)
+{
+ VFS_FIND(fsctl);
+ return handle->fns->fsctl(handle, fsp, ctx, function, req_flags,
+ in_data, in_len, out_data, max_out_len,
+ out_len);
+}
+
 NTSTATUS smb_vfs_call_fget_nt_acl(struct vfs_handle_struct *handle,
 struct files_struct *fsp,
 uint32 security_info,

	0 Document History
	1 Introduction
	2 The Samba VFS
	3 Two Types of File Systems
	4 Writing a VFS Module
	4.1 VFS Module Initialization
	4.2 VFS Function Pointer Structure
	4.3 Include Files
	4.4 VFS Functions
	4.5 The Life Cycle of a VFS
	4.6 A note on using talloc
	4.7 Providing Context between Calls
	4.8 Module Specific Parameters
	4.9 Extending the Samba files_struct
	4.10 AIO Handling in a VFS Module
	4.11 Conforming to the VFS interfaces
	4.12 Be prepared for “stat” opens
	4.13 Things to watch out for

	5 Some Existing VFS Modules
	6 Building, Installing and Debugging your VFS Module
	6.1 Building your VFS Module
	Building in a git Tree
	Building in a Source Tarball Tree
	Building in your own VFS Source Tree
	Building VFS Modules Statically

	6.2 Installing your VFS Module
	6.3 Debugging your VFS Module

	7 Adding New VFS Routines

