Clustering Samba With CTDB A Tutorial At sambaXP 2010

Michael Adam

obnox@samba.org

SerNet / Samba Team

2010-05-05

Outline

Outline

- Cluster Challenges
 - Introduction
 - Challenges For Samba
 - 2 CTDB
 - The CTDB Project
 - CTDB Design
 - Setting Up CTDB
- Clustered Samba
 - Getting Sources and Binaries
 - Clustered File Systems
 - Samba Configuration
 - CTDB manages...
 - Registry Configuration

SerNet

Ideas

- quite common: clustered web servers and database servers...
- idea: share a cluster file system as a network service (NFS/CIFS)
- i.e. turn your SAN into a *clustered* NAS
- ullet \Rightarrow we want to cluster Samba/nfs in an all-active fashion
- with CTDB, we can cluster Samba (and nfs, and ...)

Starting Points

- Samba daemons on cluster nodes need to act as one CIFS server:
 - consistent view of file ownership
 - windows file lock coherence
- hence we need IPC of Samba daemons between nodes
- furthermode share some persistent data

Challenges For Samba

- IPC: messaging (messages.tdb and signals)
- IPC: share volatile session data:
 - SMB sessions (sessionid.tdb)
 - share connections (connections.tdb)
 - share modes (locking.tdb)
 - byte range locks (brlock.tdb)
- share certain persistent data:
 - user database (passdb.tdb)
 - domain join information (secrets.tdb)
 - id mapping tables (winbindd_idmap.tdb)
 - registry (registry.tdb)

TDBs

- most problems are about distributing TDBs in the cluster
- TDB: small fast Berkeley-DB-style database with record locks and memory mapping
- volatile ("normal") TDBs:
 - read and written very frequently
 - not all data must be known to every node (or smbd process) at each point in time
 - R/W performance critical for overall fileserver performance
 - especially important for the Windows locks
- persistent TDBs:
 - read frequently
 - written rather rarely
 - data consistency very important

Michael Adam (SerNet / Samba Team)

TDBs And Clustering

- TDB R/W performance critical for Samba performance
- TDB R/W operations: excessive use of POSIX fcntl byte range locks
- fcntl locks are usually slow on cluster file systems
- the more nodes, the slower...
- ⇒ naive approach of putting TDBs on cluster storage works in principle but scales very badly
- Usual clustered data bases are also too slow.
- A more clever approach is needed.

Michael Adam (SerNet / Samba Team)

Goals

- Cluster Samba So That:
 - One node is not slower than an unclustered Samba server.
 - n+1 nodes should be faster than n nodes.
- This in requires a clustered TDB implementation ...
- ... and messaging solution.
- This is what CTDB provides.

The CTDB Project

- started in 2006
- first prototype in vl-messaging SVN branch
- Volker Lendecke, Andrew Tridgell, ...
- first usable version of CTDB: April 2007
- meanwhile: Ronnie Sahlberg project maintainer
- git://git.samba.org/sahlberg/ctdb.git
- http://ctdb.samba.org/packages/ (RPMs, Sources)

Michael Adam (SerNet / Samba Team)

The CTDB Project - Relases

- to be honest: There is no real release process.
- version number and changelog in packaging/RPM/ctdb.spec.in
- version in the master branch is incremented more or less frequently
- some versions stabilize in extra branches: 1.0.69, 1.0.82, 1.0.108, 1.0.112, ...
- Hint: packagers better check with developers for advice on versions!

The CTDB Project - Community

- #ctdb channel on freenode
- samba-technical mailing list
- feedback and contributions by packagers
- increasing development activity, number of developers

CTDB Design - Warning

A Word Of Warning

- Client connections are *not* spread over multiple cluster nodes.
- I.e., each single client connection (CIFS, nfs, ...) is serverd by one node just as a non-clustered file server would server the connection.
- Hence a single connection is not faster than on a non-clustered file server, but the sum should (possibly) be faster.
- In case of failover, connections are not migrated: clients need to reconnect.

CTDB Design – General

- one daemon ctdbd on each node (and temporary forks)
- smbd talks to local ctdbd for messaging and TDB access
- ctdbd handles metadata of TDBs via the network
- ctdbd keeps local TDB copy (LTDB) for fast data reads/writes
- the actual record read and write ops are directly to the LTDB
- normal and persistent TDBs are handled differently
- HA and cluster management features: monitor and fail over/back IP addresses and Samba, NFS and other services

Michael Adam (SerNet / Samba Team)

CTDB Design – normal TDBs

- one node does not need to know all records all the time:
- the records related to connections to a node are node specific
- when a node goes down:
- ullet \Rightarrow we may, even *should* lose records specific to that node
- a node only has those records in its LTDB that is has already accessed

CTDB Design - Record Roles

- nodes can carry certain roles with respect to a record:
- DMASTER (data master):
 - has the current, authoritative copy of a record
 - moves around as nodes write to the record
- LMASTER (location master):
 - knows the location of a record's DMASTER
 - is fixed (calculated by record hash)
 - LMASTER roles distributed across active nodes
- R/W operation to a record:
 - check if we are DMASTER
 - if not, request DMASTER role and current copy of record over network (via LMASTER)
 - read/write locally

Recovery

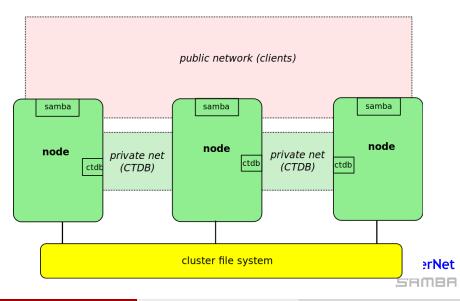
- what happens if a node goes down?
- data master for some records will be lost
- one node the *recovery master* performs *recovery*
- recovery master collects most recent copy of all records from all nodes
- additional TDB header record sequence number determines recentness
- at the end, the recovery master is data master for all records

Recovery Election / Recovery Lock

- recovery master is determined by an election process
- if the cluster file system supports POSIX fcntl byte range locks, then CTDB can use it for split brain prevention:
- election process can involve one file on shared storage: the *recovery lock* file
- nodes compete with POSIX fcntl byte range locks
- finally, the newly elected recovery master holds lock on the recovery lock file
- \Rightarrow CTDB has no split brain (other than the file system)

Performance Figures

- By Andrew Tridgell and Ronnie Sahlberg, Linux Conf Australia 2009 GPFS file system
- 32 client smbtorture NBENCH test
 - 1 node: 109 MBytes/sec
 - 2 nodes: 210 MBytes/sec
 - 3 nodes: 278 MBytes/sec
 - 4 nodes: 308 MBytes/sec


SerNet

CTDB Design – persistent TDBs

- each node always has complete copy in LTDB
- reads operations directly from LTDB
- write operations:
 - lock entire DB in a global lock
 - perform R/W ops in memory (prepare a marshall buffer)
 - at commit distribute changes to other nodes and write to LTDB in a local transaction
 - finally drop global lock
- ullet \Rightarrow data integrity and good read performance guaranteed

SerNet

CTDB - Basic Setup

Michael Adam (SerNet / Samba Team)

2010-05-05 22 / 43

CTDB - Configuration

- central file: /etc/sysconfig/ctdb
- debian based: /etc/default/ctdb
- set CTDB_RECOVERY_LOCK for split brain prevention
- fill /etc/ctdb/nodes with internal node addresses

example /etc/ctdb/nodes

10.11.12.10 10.11.12.11 10.11.12.12

same file on all nodes!

CTDB - Public Addresses

- set CTDB_PUBLIC_ADDRESSES in /etc/sysconfig/ctdb
- typical value /etc/ctdb/public_addresses

example /etc/ctdb/public_addresses

172.16.17.10/24 eth2 172.16.17.11/24 eth2 172.16.17.12/24 eth2 172.16.17.13/24 eth2 172.16.17.14/24 eth2 172.16.17.15/24 eth2

- need not be the same on all nodes
- need not even be present on all nodes (management node...)

SAMBA

IP Failover

- healthy nodes get IP addresses from their public pool
- when a node goes down: public IPs are moved to other nodes
- CTDB distributes the public IPs equally among healthy nodes
- \bullet with round robin DNS \Rightarrow HA and load balancing
- speed up client reconnects with *tickle ACKs*:
 - client does not yet know the IP has moved
 - new node does not have a valid TCP connection to client
 - new node sends illegal TCP ACK packet to the client (seqnum 0)
 - client sends back correct ACK packet to the new node
 - new node sends back a RST packet to the client
 - client re-establishes connection to the new node

CTDB Toolbox

- ctdb control ctdbd
- onnode execute programs on selected nodes

Michael Adam (SerNet / Samba Team)

tutorial sambaXP

CTDB Setting Up CTDB

ctdb status

🗉 root@node	e0:~ _ □ ×		
[root@node0 ~]# ctdb statu	s		
Number of nodes:3			
pnn:0 192.168.46.70 0K	(THIS NODE)		
pnn:1 192.168.46.71 0K			
pnn:2 192.168.46.72 0K			
Generation:2061920893			
Size:3			
hash:0 lmaster:0			
hash:1 lmaster:1			
hash:2 lmaster:2			
Recovery mode:NORMAL (0)			
Recovery master:1			
[root@node0 ~]#			

SerNet

Michael Adam (SerNet / Samba Team)

TDB Setti

Setting Up CTDB

ctdb ip

[root@node0 ~]# ctdb ip Public IPs on node 0 192.168.45.70 0 192.168.45.71 1 192.168.45.72 2 192.168.45.73 0 192.168.45.74 1 192.168.45.75 2	

SerNet

Michael Adam (SerNet / Samba Team)

tutorial sambaXP

Let's start setting up a "real" cluster.

Michael Adam (SerNet / Samba Team)

tutorial sambaXP

2010-05-05 29 / 43

Getting Sources and Binaries

Getting A Clustered Samba

- in vanilla Samba code since Samba 3.3 (January 2009)
- transaction rewrite in 3.5.2 (March 2010)
- precompiled packages from http://www.enterprisesamba.org/
- o clustered Samba repository: git://git.samba.org/obnox/samba-ctdb.git branches: v3-4-ctdb and v3-2-ctdb
- o configure --with-cluster-support
- add idmap_tdb2 to --with-shared-modules
- verify that gpfs.so is built for GPFS usage

Clustered File System - Requirements

- file system: black box
- storage: fibre channel, iSCSI, drbd, ...
- simulatneous writes from all nodes
- good to have: coherent POSIX fcntl byte range lock support use ping_pong test to verify

Special File Systems

- General Parallel File System GPFS (IBM): OK
- Global File System GFS(2) (Red Hat): OK
- GNU Cluster File System GlusterFS: OK
- Lustre (Sun): OK
- Oracle Cluster File System OCFS(2): OK
- Ceph: ?

Samba Configuration

identical configuration on all nodes

- o clustering = yes
- passdb backen = tdbsam
- o groupdb:backend = tdb
- vfs objects = fileid fileid:algorithm = fsid / fsname
- o idmap backend = tdb2
- no need to change private dir

```
example smb.conf
```

```
[global]
   clustering = yes
   netbios name = smbcluster
   workgroup = mydomain
   security = ads
   passdb backend = tdbsam
   groupdb:backend = tdb
   idmap backend = tdb2
   idmap uid = 1000000-2000000
   idmap gid = 1000000-2000000
   fileid:algorithm = fsname
[share]
   path = /cluster_storage/share
   writeable = yes
   vfs objects = fileid
```

Let's configure Samba on our cluster!

Michael Adam (SerNet / Samba Team)

tutorial sambaXP

2010-05-05 36 / 43

CTDB manages ...

- CTDB can manage several services
- i.e. start, stop, monitor them
- controlled by sysconfig variables CTDB_MANAGES_SERVICE
- management performed by scripts in /etc/ctdb/events.d
- managed services should be removed from the runlevels
- NOTE: if CTDB_MANAGES_SAMBA, do *not* set interfaces or bind interfaces only

CTDB manages ...

- CTDB_MANAGES_SAMBA
- CTDB_MANAGES_WINBIND
- CTDB_MANAGES_NFS
- CTDB_MANAGES_VSFTPD
- CTDB_MANAGES_HTTPD

SerNet

Michael Adam (SerNet / Samba Team)

Registry Configuration

Registry Configuration

- store config in Samba's registry
- HKLM\Software\Samba\smbconf
- subkey \Leftrightarrow section
- value ⇔ parameter
- stored in registry.tdb \Rightarrow distributed across cluster by CTDB
- means of easily managing the whole Samba cluster

Activation of Registry Configuration

- registry shares = yes
- o include = registry
- o config backend = registry

smb.conf for cluster usage

[global]
 clustering = yes
 include = registry

SerNet

Michael Adam (SerNet / Samba Team)

net conf

manage the whole Samba cluster with one command

net	conf	list	Dump the complete configuration in smb.conf format.
net	conf	listshares	List the share names.
net	conf	import	Import configuration from file in smb.conf format.
\mathtt{net}	conf	drop	Delete the complete configuration.
\mathtt{net}	conf	showshare	Show the definition of a share.
net	conf	addshare	Create a new share.
net	conf	delshare	Delete a share.
\mathtt{net}	conf	setparm	Store a parameter.
\mathtt{net}	conf	getparm	Retrieve the value of a parameter.
\mathtt{net}	conf	delparm	Delete a parameter.
net	conf	getincludes	Show the includes of a share definition.
net	conf	setincludes	Set includes for a share.
net	conf	delincludes	Delete includes from a share definition.

SerNet

S'AMBA

Let's experiment more with our cluster! ...

Michael Adam (SerNet / Samba Team)

tutorial sambaXP

2010-05-05 42 / 43

Thank you very much!

Michael Adam (SerNet / Samba Team)

tutorial sambaXP