
Clustered NAS For Everyone
Clustering Samba With CTDB

Michael Adam <obnox@samba.org>
Samba Team / SerNet GmbH

April 15, 2009

Abstract

Clustered storage is a very popular topic. Together with the open source
software CTDB, current vanilla Samba code allows for setting up a freely scaling
clustered CIFS Server that shares a distributed file system–a feature that current
Microsoft servers do not offer!

This paper explains the problems Samba faces when serving files from a clus-
tered file system, describes the design principles of CTDB and demonstrates how
Samba 3.3 together with CTDB as a lock-manager and failover daemon can be
configured to be a robust, perfomant clustered CIFS server that scales well.

Contents

1 Introduction 2

2 The File System – A Black Box 2
2.1 Ping Pong . 2
2.2 Special File Systems . 3

3 Challenges For Clustered Samba 3

4 The CTDB Project 4
4.1 History of the project . 4
4.2 Samba versions for use with CTDB 4

5 Workings of CTDB 5
5.1 Persistent TDBs . 5
5.2 Normal TDBs . 5
5.3 Recovery . 6
5.4 The Recovery Lock . 6

6 Configuring CTDB 6
6.1 Public addresses . 7
6.2 IP Failover: Tickle ACKs . 8
6.3 CTDB manages ... 8
6.4 CTDB Toolbox . 9

1

7 Setting up Samba for Clustering 10
7.1 Building clustered Samba . 10
7.2 Configuration Options . 10
7.3 Example . 11

8 Registry Configuration 12
8.1 Three Levels of Activation . 12
8.2 Accessing Registry Configuration 13

9 Conclusion 14

References 14

1 Introduction

As the numbers of bytes and users grow, storage space tends to become too small and
too slow over time. Therefore, distributed storage comes in very handy. The stor-
age space which is usually but not necessarily attached via a SAN, can be extended
by adding disks or storage nodes, depending on the storage architecture. With a dis-
tributed file system, the same data can be accessed from an arbitrary number of nodes.
By adding more cluster-nodes that use the common file system, the services offered by
the cluster can in principle scale arbitrarily within the limits opposed by the hardware.
This is common practice for instance with web- and database servers.

The topic of this paper is how the file system itself can be offered in a scaling
manner via network protocols like CIFS and also NFS. That means the goal is to
basically turning a SAN into a clustered, scaling NAS. Samba [1] together with the
new open source software CTDB [3] achieves this goal for the CIFS protocol. But
CTDB, while originally developed specfically as the cluster-enhancement software for
Samba, has meanwhile been extended by a couple of general high availability and load
balancing features that also makes other file services like NFS and FTP clusterable.

2 The File System – A Black Box

For the purposes of this paper, it is not important, exactly which distributed file system
is used. Neither is it important how this file system is exactly constructed. The storage
can be attached via fibre channel from a SAN, it can be imported via iSCSI, even
consist of local hard disks replicated with drbd [12]. The only requirement for CTDB
to be able operate is that all nodes that want to participate in the CTDB-Cluster have
a common distributed file system mounted and that this file system supports POSIX-
fcntl-locks.

2.1 Ping Pong

The simple program ping_pong [18] can be used to check whether a file system is
suitable for use with CTDB. It tests coherence and performance of fcntl byte range
locks on the file system as well as correctness and perfomance of concurrent write

2

operations and the memory mapping mechanism mmap. The Samba wiki [19] has the
details on ping-pong.

2.2 Special File Systems

The file system that has been most thoroughly tested with CTDB and Samba until
now is probably IBM’s proprietory General Parallel File System GPFS [13]. But there
are suitable open source cluster file systems out there as well: Red Hat’s Global File
System GFS [14] has also been extensively tested. Other file systems that have been
reported to work with CTDB are the GNU Cluster File System GlusterFS [15] and
Sun’s Lustre [16]. The Oracle Cluster File System OCFS2 [17] is not ready for CTDB
yet, since support for POSIX-fcntl-locks is only just being worked on.

For the rest of this paper, the distributed file system will be treated as a black box.

3 Challenges For Clustered Samba

When serving files from a distributed storage, there are a number of things that need
to be taken care of.

Firstly, one needs to realize that for several Samba daemons running on multiple
cluster nodes, serving the same files from a common file system essentially implies
that the various Samba instances act as the same CIFS server: The files must belong to
the same users and for instance file locking must work across the nodes.

Operating as a single server, the Samba instances must share certain data:

• The user database has to be synchronized between the nodes, if a local user
database is used at all. This is the case for a standalone server or a domain
controller.

• For a member server in a Windows domain, the join information must be avail-
able to all nodes. This is basically the domain SID and the machine account
password.

• The mapping tables that assoicate Unix user and group IDs to the Windows
Users and Groups have to agree on all nodes.

On a lower level, certain metadata has to be available to all nodes in the cluster for
proper file serving:

• The active SMB-sessions and share connections constitute the overall state of
the distributed SMB server.

• A Samba server needs to offer various kinds of locks: Whole files are locked
exclusively with share modes while byte range locks are used to grant exclusive
access to portions of a file. It is very important for distributed Samba that these
locks are honoured by the smbd processes on all the nodes. These Windows
locks are mandatory, not advisory like the POSIX locks that the file system
offers.

3

Finally, just like the Samba processes on a single server, the Samba daemons on the
various nodes need to communicate with each other through a messaging mechanism.
This is used for instance to notify a client that a file that had previously been locked
has now become available.

Apart from the messaging that involves signals, all the data mentioned above are
stored in Samba’s internal TDB databases [2]. TDB is a small, fast Berkeley-DB-style
database that additionally supports record locks and memory mapping. With respect to
the nature of the data stored, Samba distinguishes two sorts of TDB databases: The first
list of databases mentioned above is the persistent kind – these pieces of information
need to survive restarts and usually stay around for long. The persistent data is read
rather frequently but seldomly written. So write performance is not critical here. For
these TDBs, data integrity is more important than performance. The second kind of
databases, like the locking and session databases, contain short-lived data and need to
be written and read very frequently. These databases could be called volatile or non-
persistent TDBs but in CTDB speak, they are simply referred to as the normal TDBs.
A good performance of the normal databases is critical for Samba’s overall file server
performance.

This is also the reason why the naive approach of storing these databases in the
cluster file system does not work very well: The TDB write operations make heavy
use of fcntl locks. And these are usually slow on cluster file systems, the more
nodes, the slower. This leads to bad, even negative scaling when clustering Samba
this way. But the declared goal is to achieve a scaling where the number of requests
answered per second and the accumulated data throughput grow as linearly as possible.

4 The CTDB Project

This is where CTDB comes into play. CTDB can be considered as an add-on soft-
ware to Samba. Apart from taking care of the inter-node-messaging of Samba, CTDB
distributes the TDB databases across all cluster nodes.

4.1 History of the project

The first usable version of CTDB was released in April 2007. The preceeding work
leading up to the creation of CTDB was started in 2006 by a group of developers
around Volker Lendecke and Andrew Tridgell. Meanwhile, Ronnie Sahlberg has be-
come the maintainer and principal author of the CTDB project. The official CTDB
sources can be obtained from his CTDB-git-repository [7]. RPM-packages of CTDB
and the latest official source tarball are available from [8].

4.2 Samba versions for use with CTDB

Until recently, only a specially patched version of Samba contained the cluster en-
hancements that allowed Samba to use CTDB for inter-node messaging and handling
of the TDB databases. The first cluster version of Samba was based on Version 3.0.25.
RPMs of this version can still be found on the web [9]. Version 3.2 of Samba that
was released on July 1, 2008, contains cluster support that was still incomplete. So
a branch v3-2-ctdb of the 3.2 series branch was created after the feature freeze

4

of Samba 3.2. This branch is maintained in the repository [10] and contains all the
cluster enhancements that were developed in the sequel. The Samba-Packages found
under [8] are built from these sources. Samba 3.3 that was released in January 2009,
contains full cluster support in the unmodified sources for the first time. The packages
offered on enterprisesamba.org [11] are built with cluster support since April
2009.

5 Workings of CTDB

On each cluster node, a CTDB daemon ctdb is running. Samba, instead of writing
direcly to its TDB databases, talks to its local ctdbd. The daemons negotiate the
metadata for the TDBs over the network. But for the actual data write and read op-
erations, they maintain local copies on fast local storage. According to the different
requirements, CTDB treats the normal and the persistent database completely differ-
ently.

5.1 Persistent TDBs

For the persistent TDBs, each node always has a complete and up-to-date copy. So the
read operations only involve fast local reads. When a node wants to write to a persis-
ten TDB, it locks the whole database on the network with a transaction, performs its
write and read operations within that transaction, and the transaction commit operation
finally distributes the changes to all nodes and also writes them locally. This way data
integrity and good read performance is guaranteed.

5.2 Normal TDBs

For normal TDBs, the key insight is that one node does not need to know all records
of a database. Most of the time, it is sufficient when a node has up to date copies of
the records that affect its own client connections. Even more importantly, when a node
goes down, it is acceptable, yes even desirable to lose those data that are just about the
client connections on that node.

Therefore, for a normal TDB, a node only has those records in its local TDB that
it has already accessed. Data is not automatically propagated to other nodes and just
transferred upon request. Only one node has the current, authoritative copy of a record,
this is the record’s data master. When a node wants to write or read a record, it first
checks, whether it is the data master for this node. If so, it directly accesses the record
in the local TDB. Otherwise, it first requests the current record data along with the data
master role and then accesses the data locally.

Due to the fact that data is always read and written locally, a one node CTDB-
cluster is essentially as fast as direct TDB access without CTDB intervention. The
good scalability is further based in the fact that data is only transferred upon explicit
request and not unconditionally. Performance measurements confirm this design in
a very satisfactory manner: An smbtorture-NBENCH test with 32 clients scales
as can be seen in table 1. These test results were presented by Andrew Tridgell and
Ronnie Sahlberg at Linux Conf Australia 2008 [20].

5

nodes throughput
1 109 MBytes/sec
2 210 MBytes/sec
3 278 MBytes/sec
4 308 MBytes/sec

Table 1: Performance figures

5.3 Recovery

What happens if a node dies or leaves the cluster? Since along with the node probably
also the data master for some records has vanished, CTDB then performs a process
called recovery to re-establish a proper state. The recovery is carried through by the
node that holds the role of the recovery master. It collects the most recent copy of all
records from the other nodes. In order to be able to determine what is the most recent
copy, CTDB keeps track of data master role changes with a record sequence number
(RSN) that it stores in the local TDB headers in addition to the standard TDB headers.
At the end of the recovery, the record master is the data master of every record of every
normal TDB.

5.4 The Recovery Lock

The recovery master is dermined by an election process. This process involves a lock
file –the recovery lock– that is placed in the cluster file system. At the end of the
election, the newly nominated recovery master holds an fcntl-lock on the recovery
lock file. This lock is the only reason for the requirement that the cluster file system
must support POSIX fcntl locks. While other election processes are imaginable that
would not involve a lock on the shared file system, this mechanism has the enormous
advantage that it prevents split brain for CTDB as long as the distributed file system
stays intact!

6 Configuring CTDB

For proper operation, CTDB cluster requires at least two separate networks, one inter-
nal network, through which the CTDB daemons communicate, and one public network
through which the cluster offers its services like Samba and NFS to the clients. The
internal network can be the same as the network the cluster filesystem uses for com-
munication. Figure 1 shows the basic setup of a three node CTDB cluster.

The central configuration file for CTDB is /etc/sysconfig/ctdb. It con-
tains detailed comments about the available configuration parameters. The only vari-
able that strictly must be set is the CTDB_RECOVERY_LOCK. It specifies the full path
of the CTDB recovery lock file in the cluster file system. Furthermore, the adminis-
trator has to fill the file /etc/ctdb/nodes with the IP addresses of all the cluster
nodes, that have statically been assigned to the nodes in the internal CTDB network.
The location of the nodes file can be changed through the variable CTDB_NODES in
/etc/sysconfig/ctdb. This file must be identical on all nodes. Here is an ex-
ampe of a nodes file:

6

Figure 1: Basic structure of a CTDB cluster

10.0.0.10
10.0.0.11
10.0.0.12

It simply contains one IP address per line.

6.1 Public addresses

There are several modes of operation for the public network. It is possible to assign
IP addresses satatically, and have CTDB stay out of business. This way, one dispenses
all failover and high availability features of CTDB. A second mode is the LVS mode,
in which the cluster nodes carry one common IP address and all client traffic is multi-
plexed by one single node, the LVS master.

In the third and most common mode, CTDB takes care of distributing a set of
public IP addresses dynamically across the nodes. When a node goes down, CTDB
moves the node’s public IP addresses to other, healthy nodes. Together with a round
robin DNS setup, this makes CTDB a loadbalancing and high availability solution for
the services offered by the cluster.

To configure CTDB to handle the distribution of the public addresses, it has to be
told the location of a public addresse file in the Variable CTDB_PUBLIC_ADDRESSES
in the file /etc/sysconfig/ctdb. This is an example of a public addresse file:

192.168.0.100/24 eth0
192.168.0.101/24 eth0
192.168.0.102/24 eth0
10.11.12.13/16 eth1
10.11.12.14/16 eth1
10.11.12.15/16 eth1

7

The format is one address incuding netmask per line, with a network interface name.
A default interface can be configured with the variable CTDB_PUBLIC_INTERFACE
in the sysconfig file. A typical location for the public addresses file is

/etc/ctdb/public_addresses

The public addresses file does not have to agree on all nodes, it is used to specify the
pool of addresses that a node can possibly hold.

6.2 IP Failover: Tickle ACKs

When a node goes leaves the cluster, CTDB moves its public IP addresse to other
nodes that have the addresses listed in their public addresses pool. But now the clients
connected to that node have to reconnect to the cluster. In order to reduce the nasty
delays that come with these IP switches to a minimum, CTDB makes use of a clever
trick called tickle-ACK. The dilemma is this: The client does not know that the IP he is
connected to has moved, while the new CTDB node only knows the TCP connection
has become invalid, but does not know the TCP sequence number. So the new CTDB
node sends an invalid TCP packet with sequence and ACK number set to zero. This
“tickles” the client to send a valid ACK packet back to the new node. Now CTDB
can validly close the connection by sending a RST packet and force the client to re-
establish the connection. This is especially useful for NFS clients.

6.3 CTDB manages ...

CTDB has evolved to a high availability solution for a couple of services offered by
the cluster. CTDB can “manage” a service, which means that it takes care of starting
and stopping the service and that CTDB monitors the runnig service. The following
sysconfig-variables can be set to yes to have CTDB manage the corresponding
services:

• CTDB_MANAGES_SAMBA

• CTDB_MANAGES_WINBIND

• CTDB_MANAGES_NFS

• CTDB_MANAGES_VSFTPD

• CTDB_MANAGES_HTTPD

The management is performed by the event scripts stored under

/etc/ctdb/events.d/

Note that when CTDB manages a service, this service should be removed from the
system runlevels.

8

6.4 CTDB Toolbox

Apart from the CTDB daemon ctdbd, there are two commandline tools in the CTDB
suite: The CTDB management tool ctdb and the script onnode.

The program ctdb can be used to inspect and manage basically all aspects of the
CTDB cluster. The most common commands are ctdb status (see figure 2) that

Figure 2: ctdb status on a three node cluster

prints an overview of the cluster’s heath status and ctdb ip (see figure 3) which

Figure 3: Example ctdb ip output

prints the current distribution of the public IP addresse across the nodes.
The script onnode allows commands to be executed on all or on seleced nodes.

onnode looks into the nodes file to get the nodes’ IP addresses, but it does not require
ctdbd to be running, since it uses ssh to connect to the remote nodes. This is ex-
tremely useful for distributing configuration files or software packages onto all nodes
and for starting services, especially CTDB itself on all or selected nodes.

The manual pages contain all the details about ctdb and onnode.

9

7 Setting up Samba for Clustering

Once CTDB is set up properly, it is easy to configure Samba for clustering. Samba
3.3 that has been released on January 15, 2009, has full cluster support in the vanilla
sources.

7.1 Building clustered Samba

To begin with, Samba must be compiled with cluster support. For this purpose, the
configure parameter

--with-cluster-support

needs to be specified. Further the list of shared modules that is passed to configure
with --with-shared-modules should contain idmap_tdb2. The tdb2 mod-
ule is the cluster replacement for the tdb idmapping module. As mentioned above,
precompiled Samba packages ready for cluster deployment can be downloaded from [11].

7.2 Configuration Options

Once this is done, there are a few important smb.conf options:

• The new option clustering = yes enables cluster support at runtime. This
option makes samba talk to CTDB for its messaging and instead of direct TDB
access for most of the TDB databases. Without this option, Samba behaves just
like a Samba built without cluster support. With clustering, internal identifi-
cation of the smbd processes is extendet to contain not only the PID but also
the node number. This can for instance be seen in the output of the smbstatus
command. Figure 4 shows an example.

Figure 4: Output of smbstatus in a cluster

• On some places on the Samba wiki [6] and the CTDB website [3] contain the
information that the private dir should be put into the cluster file system.
This information stems from the early days of CTDB when the support for per-
sistent TDBs had not yet been added. Nowadays this is no longer necessary nor
recommended.

• If a local password database is to be used and if it should be automatically dis-
tributed across the cluster, then the value of the parameter passdb backend
should be changed from its default smbpasswd to tdbsam.

10

• The parameter groupdb:backend = tdb makes tdb propagate the group
mappings across the cluster.

• The file identification code Samba uses internally when storing locking informa-
tion is usually constructed from the device and inode number from the stat()
system call. Since the device number is not a cluster invariant of a file, the
fileid vfs module allows to change the algorithm used for creating the file ID.
The two supported methods are fsname and fsid. The first, which is the de-
fault, constructs replaces the device number with a hash value of the file system
name obtained from the getmntent() call, while the second uses the file sys-
tem id from the statfs() call. The module is loaded by specifying fileid
the list of vfs objects list globally or per share. The method of the file ID
creation can be changed by setting fileid:algorithm to either fsname or
fsid. See the vfs_fileid manpage for details.

• When using CTDB_MANAGES_SAMBA, it is extremely important not to change
the network interfaces or addresses Samba is listening on by the parameters
interfaces or bind interfaces only! This is because CTDB’s mon-
itoring of the samba services requires them to be listening on the wild card ad-
dresses 0.0.0.0 for IPv4 or :: for IPv6.

7.3 Example

Here is an example smb.conf file for cluster deployment:

[global]
clustering = yes
netbios name = sambacluster
workgroup = mydomain
security = ads
passdb backend = tdbsam

idmap backend = tdb2

groupdb backend = tdb
idmap uid = 1000000-20000000
idmap gid = 1000000-20000000

fileid:algorithm = fsid

[share]
path = /cluster_storage/shared
writeable = yes
vfs objects = fileid

In this example, Samba acts as a member server in an Active Directory domain. This
file should be distributed to all cluster nodes.

11

8 Registry Configuration

While this is already easy enough, the registry based configuration introduced in July
2008 with Samba 3.2, makes the management of a Samba cluster easier still. Registry
configuration that can be used in addition to or as an alternative for the traditional
smb.conf text file configuration, is stored in Samba’s internal registry database in
the key

HKLM\Software\Samba\smbconf

The data model of the registry is very well suited for storing Samba’s configuration
data which consists of sections built of parameters: A registry key consists of its name,
a list of its subkeys, and a list of its values. A registry value consits of the value name
and the value data. So configuration sections correspond to subkeys of the smbconf
key and parameters in a section correspond to the values in the respective registry
subkey.

The key feature of the registry configuration is the fact that Samba stores the reg-
istry data in the registry.tdb, which is hence automatically distributed across the
cluster nodes.

8.1 Three Levels of Activation

Registry configuration can be activated in three levels:

• The first level is to only load share definitions from registry. This is triggered by
setting

registry shares = yes

in the global section of smb.conf.

• Global options can be included from registry by specifying

include = registry

in the global section of smb.conf. In this case global options from registy are
mixed with the global options from the text file just like when including a text
file. Registry shares are implicitly activated by this mode.

• A registry-only configuration can be triggered by putting

config backend = registry

into the global section of smb.conf. This ignores all text configuration and
reads global and share configuration exclusively from registry.

Note that the text configuration file smb.conf is still the initial configuration source
in all cases. For the clustering scenario, a registry only configuration is not possible,
since Samba has to be told for a start that registry is to be accessed not locally but
through CTDB. Hence the minimal smb.conf file that has to be present on all cluster
nodes looks like this:

12

[global]
clustering = yes
include = registry

All other configuration options can be put into registry and therefore after this initial
text configuration, the whole cluster can be configured in one workstep.

8.2 Accessing Registry Configuration

Now that registry configuration has been activated, how does one fill the registry with
configuration data? There are several possible ways:

• The windows administrator can use the remote feature of the windows registry
editor regedit.exe (see figure 5).

Figure 5: Configuring Samba with regedit.exe

• From the unix command line, the two commands net registry and net rpc registry
offer basically the same functionality as regedit.exe locally and over the
WINREG rpc interface, respectively.

• But the most comfortable way is to use the new dedicated tool net conf that
offers an interface specific to registry configuration. Table 2 shows the list of
subcommands offered by net conf. For the details on net conf, see the net
manual page and the commandline help for net conf.

The details on registry configuration system can be obtained from [21].

13

list Dump the complete configuration in smb.conf like format.
import Import configuration from file in smb.conf format.
listshares List the share names.
drop Delete the complete configuration.
showshare Show the definition of a share.
addshare Create a new share.
delshare Delete a share.
setparm Store a parameter.
getparm Retrieve the value of a parameter.
delparm Delete a parameter.
getincludes Show the includes of a share definition.
setincludes Set includes for a share.
delincludes Delete includes from a share definition.

Table 2: The net conf subcommands.

9 Conclusion

Given a clustered file system that supports POSIX fcntl byte range locks, vanilla
Samba 3.3 and CTDB allow for easily setting up a clustered CIFS server that scales
very well, thanks to the design of CTDB. Hence, with an open source cluster file
system like GFS or GlusterFS, one can implement a clustered NAS using only open
source software: Linux, CTDB, and Samba. Samba’s registry configuration system
greatly eases the adminstration of the Samba/CTDB cluster.

References

[1] Samba - the Open Source CIFS server for UNIX. http://www.samba.org/

[2] TDB - Samba’s trivial database. http://tdb.samba.org/

[3] CTDB - the clustered tdb project. http://ctdb.samba.org/

[4] Samba Wiki: CTDB project: http://wiki.samba.org/index.php/
CTDB_Project

[5] Samba Wiki: Samba & Clustering: http://wiki.samba.org/index.
php/Samba_%26_Clustering

[6] Samba Wiki: CTDB Setup: http://wiki.samba.org/index.php/
CTDB_Setup

[7] CTDB, the official git repository, git://git.samba.org/sahlberg/
ctdb.git

[8] CTDB, packages and sources, http://ctdb.samba.org/packages/

[9] Old RPM packages of CTDB and Samba 3.0.25-ctdb, http://ctdb.samba.
org/packages/ibm/SOFS

14

http://www.samba.org/
http://tdb.samba.org/
http://ctdb.samba.org/
http://wiki.samba.org/index.php/CTDB_Project
http://wiki.samba.org/index.php/CTDB_Project
http://wiki.samba.org/index.php/Samba_%26_Clustering
http://wiki.samba.org/index.php/Samba_%26_Clustering
http://wiki.samba.org/index.php/CTDB_Setup
http://wiki.samba.org/index.php/CTDB_Setup
git://git.samba.org/sahlberg/ctdb.git
git://git.samba.org/sahlberg/ctdb.git
http://ctdb.samba.org/packages/
http://ctdb.samba.org/packages/ibm/SOFS
http://ctdb.samba.org/packages/ibm/SOFS

[10] The Clustered Samba git Repository, git://git.samba.org/obnox/
samba-ctdb.git

[11] Samba Packages for Enterprise Linux, a services offered by SerNet GmbH,
http://www.enterprisesamba.org/

[12] DRBD, the Distributed Replicated Block Device, http://www.drbd.org/

[13] IBM, General Parallel File System (GPFS), http://www-03.ibm.com/
systems/clusters/software/gpfs/index.html

[14] Red Hat, Global File System (GFS), http://www.redhat.com/gfs/

[15] GNU Cluster File System (GlusterFS), http://www.gluster.org/

[16] Lustre File System, http://www.lustre.org/

[17] Oracle Cluster File System (OCFS2), http://oss.oracle.com/
projects/ocfs2/

[18] ping_pong.c, http://junkcode.samba.org/ftp/unpacked/
junkcode/ping_pong.c

[19] Sama Wiki: Ping Pong, http://wiki.samba.org/index.php/Ping_
pong

[20] Andrew Tridgell und Ronnie Sahlberg, Clustered Samba, Talk at Linux Conf
Australia 2008, http://mirror.linux.org.au/pub/linux.conf.
au/2008/slides/178-tridge-ctdb.pdf

[21] Michael Adam, Samba’s New Registry Based Configuration System, Up-
times No. 2/2008, pp. 105–124, ISBN 978-3-86541-300-0 (pdf: http:
//samba.org/~obnox/presentations/linux-kongress-2008/
lk2008-obnox.pdf)

License

This work is subject to the Creative Commons Attribution-Noncommercial-Share Alike
license: http://creativecommons.org/licenses/by-nc-sa/3.0/.

This paper is a slightly extended version of a paper by the author, submitted to
the NLUUG spring conference 2009, “Filesystems and Storage”, http://www.
nluug.nl/activiteiten/events/vj09/index-en.html.

15

git://git.samba.org/obnox/samba-ctdb.git
git://git.samba.org/obnox/samba-ctdb.git
http://www.enterprisesamba.org/
http://www.drbd.org/
http://www-03.ibm.com/systems/clusters/software/gpfs/index.html
http://www-03.ibm.com/systems/clusters/software/gpfs/index.html
http://www.redhat.com/gfs/
http://www.gluster.org/
http://www.lustre.org/
http://oss.oracle.com/projects/ocfs2/
http://oss.oracle.com/projects/ocfs2/
http://junkcode.samba.org/ftp/unpacked/junkcode/ping_pong.c
http://junkcode.samba.org/ftp/unpacked/junkcode/ping_pong.c
http://wiki.samba.org/index.php/Ping_pong
http://wiki.samba.org/index.php/Ping_pong
http://mirror.linux.org.au/pub/linux.conf.au/2008/slides/178-tridge-ctdb.pdf
http://mirror.linux.org.au/pub/linux.conf.au/2008/slides/178-tridge-ctdb.pdf
http://samba.org/~obnox/presentations/linux-kongress-2008/lk2008-obnox.pdf
http://samba.org/~obnox/presentations/linux-kongress-2008/lk2008-obnox.pdf
http://samba.org/~obnox/presentations/linux-kongress-2008/lk2008-obnox.pdf
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.nluug.nl/activiteiten/events/vj09/index-en.html
http://www.nluug.nl/activiteiten/events/vj09/index-en.html

	Introduction
	The File System -- A Black Box
	Ping Pong
	Special File Systems

	Challenges For Clustered Samba
	The CTDB Project
	History of the project
	Samba versions for use with CTDB

	Workings of CTDB
	Persistent TDBs
	Normal TDBs
	Recovery
	The Recovery Lock

	Configuring CTDB
	Public addresses
	IP Failover: Tickle ACKs
	CTDB manages ...
	CTDB Toolbox

	Setting up Samba for Clustering
	Building clustered Samba
	Configuration Options
	Example

	Registry Configuration
	Three Levels of Activation
	Accessing Registry Configuration

	Conclusion
	References

